Non-Hermitian physics and master equations
- URL: http://arxiv.org/abs/2201.05367v1
- Date: Fri, 14 Jan 2022 10:08:09 GMT
- Title: Non-Hermitian physics and master equations
- Authors: Federico Roccati, G. Massimo Palma, Fabio Bagarello, Francesco
Ciccarello
- Abstract summary: We show how to connect non-Hermitian Hamiltonians to a GKSL master equation for the full density matrix.
Non-Hermitian Hamiltonians have attracted great interest in the last twenty years due to a number of unconventional properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A longstanding tool to characterize the evolution of open Markovian quantum
systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation.
However, in some cases, open quantum systems can be effectively described with
non-Hermitian Hamiltonians, which have attracted great interest in the last
twenty years due to a number of unconventional properties, such as the
appearance of exceptional points. Here, we present a short review of these two
different approaches aiming in particular to highlight their relation and
illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL
master equation for the full density matrix.
Related papers
- Entanglement Hamiltonian and effective temperature of non-Hermitian quantum spin ladders [0.0]
We analytically investigate the entanglement Hamiltonian and entanglement energy spectrum of a non-Hermitian spin ladder.
Our findings provide new insights into quantum entanglement in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-25T16:20:24Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Magnetization in a non-equilibrium quantum spin system [0.0]
We show that the effective non-Hermitian Hamiltonian can accurately represent the long-term dynamics of a critical two-level open quantum system.
The NESS is identical to the coalescent state of the effective non-Hermitian Hamiltonian.
This discovery paves the way for a better understanding of the long-term dynamics of critical open quantum systems.
arXiv Detail & Related papers (2024-06-01T02:16:24Z) - Duality between open systems and closed bilayer systems, and thermofield double states as quantum many-body scars [49.1574468325115]
We find a duality between open many-body systems governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation.
Under this duality, the identity operator on the open system side maps to the thermofield double state.
We identify broad classes of many-body open systems with nontrivial explicit eigen operators $Q$ of the Lindbladian superoperator.
arXiv Detail & Related papers (2023-04-06T15:38:53Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Maximal quantum entanglement at exceptional points via unitary and
thermal dynamics [0.3441021278275805]
Minimal, open quantum systems governed by non-Hermitian Hamiltonians have been realized across multiple platforms.
We investigate the dynamics of open systems with Hermitian or anti-Hermitian Hamiltonians, both of which can be implemented in such platforms.
arXiv Detail & Related papers (2021-09-15T18:08:14Z) - Preserving quantum correlations and coherence with non-Markovianity [50.591267188664666]
We demonstrate the usefulness of non-Markovianity for preserving correlations and coherence in quantum systems.
For covariant qubit evolutions, we show that non-Markovianity can be used to preserve quantum coherence at all times.
arXiv Detail & Related papers (2021-06-25T11:52:51Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Hybrid-Liouvillian formalism connecting exceptional points of
non-Hermitian Hamiltonians and Liouvillians via postselection of quantum
trajectories [0.0]
We introduce a hybrid-Liouvillian superoperator capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection)
Our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors.
arXiv Detail & Related papers (2020-02-26T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.