Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast
Training and Evaluation of Neural ODEs
- URL: http://arxiv.org/abs/2201.05715v1
- Date: Fri, 14 Jan 2022 23:56:19 GMT
- Title: Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast
Training and Evaluation of Neural ODEs
- Authors: Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk
Topcu
- Abstract summary: We propose a data-driven approach to the training of neural ordinary differential equations (NODEs)
The proposed approach achieves the same accuracy as adaptive step-size schemes while employing only low-order Taylor expansions.
A suite of numerical experiments demonstrate that TL-NODEs can be trained more than an order of magnitude faster than state-of-the-art approaches.
- Score: 22.976119802895017
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Neural ordinary differential equations (NODEs) -- parametrizations of
differential equations using neural networks -- have shown tremendous promise
in learning models of unknown continuous-time dynamical systems from data.
However, every forward evaluation of a NODE requires numerical integration of
the neural network used to capture the system dynamics, making their training
prohibitively expensive. Existing works rely on off-the-shelf adaptive
step-size numerical integration schemes, which often require an excessive
number of evaluations of the underlying dynamics network to obtain sufficient
accuracy for training. By contrast, we accelerate the evaluation and the
training of NODEs by proposing a data-driven approach to their numerical
integration. The proposed Taylor-Lagrange NODEs (TL-NODEs) use a fixed-order
Taylor expansion for numerical integration, while also learning to estimate the
expansion's approximation error. As a result, the proposed approach achieves
the same accuracy as adaptive step-size schemes while employing only low-order
Taylor expansions, thus greatly reducing the computational cost necessary to
integrate the NODE. A suite of numerical experiments, including modeling
dynamical systems, image classification, and density estimation, demonstrate
that TL-NODEs can be trained more than an order of magnitude faster than
state-of-the-art approaches, without any loss in performance.
Related papers
- Parametric Taylor series based latent dynamics identification neural networks [0.3139093405260182]
A new latent identification of nonlinear dynamics, P-TLDINets, is introduced.
It relies on a novel neural network structure based on Taylor series expansion and ResNets.
arXiv Detail & Related papers (2024-10-05T15:10:32Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
We propose a simulation-free framework for training neural ordinary differential equations (NODEs)
We employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data.
Our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness.
arXiv Detail & Related papers (2024-05-19T13:15:23Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Distributional Gradient Matching for Learning Uncertain Neural Dynamics
Models [38.17499046781131]
We propose a novel approach towards estimating uncertain neural ODEs, avoiding the numerical integration bottleneck.
Our algorithm - distributional gradient matching (DGM) - jointly trains a smoother and a dynamics model and matches their gradients via minimizing a Wasserstein loss.
Our experiments show that, compared to traditional approximate inference methods based on numerical integration, our approach is faster to train, faster at predicting previously unseen trajectories, and in the context of neural ODEs, significantly more accurate.
arXiv Detail & Related papers (2021-06-22T08:40:51Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.