Noncommutative Geometry of Computational Models and Uniformization for
Framed Quiver Varieties
- URL: http://arxiv.org/abs/2201.05900v1
- Date: Sat, 15 Jan 2022 18:08:50 GMT
- Title: Noncommutative Geometry of Computational Models and Uniformization for
Framed Quiver Varieties
- Authors: George Jeffreys and Siu-Cheong Lau
- Abstract summary: We formulate a mathematical setup for computational neural networks using noncommutative algebras and near-rings.
We study the moduli space of the corresponding framed quiver representations, and find moduli of Euclidean and non-compact types in light of uniformization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate a mathematical setup for computational neural networks using
noncommutative algebras and near-rings, in motivation of quantum automata. We
study the moduli space of the corresponding framed quiver representations, and
find moduli of Euclidean and non-compact types in light of uniformization.
Related papers
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Connecting Permutation Equivariant Neural Networks and Partition Diagrams [0.0]
We show that all of the weight matrices that appear in Permutation equivariant neural networks can be obtained from Schur-Weyl duality.
In particular, we adapt Schur-Weyl duality to derive a simple, diagrammatic method for calculating the weight matrices themselves.
arXiv Detail & Related papers (2022-12-16T18:48:54Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Multiparameter Persistent Homology-Generic Structures and Quantum
Computing [0.0]
This article is an application of commutative algebra to the study of persistent homology in topological data analysis.
The generic structure of such resolutions and the classifying spaces are studied using results spanning several decades of research.
arXiv Detail & Related papers (2022-10-20T17:30:20Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - K\"ahler Geometry of Quiver Varieties and Machine Learning [0.0]
We develop an algebro-geometric formulation for neural networks in machine learning using the moduli space of framed representations quiver.
We prove the universal approximation theorem for the multi-variable activation function constructed from the complex projective space.
arXiv Detail & Related papers (2021-01-27T15:32:24Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic neural networks (AlgNNs) are composed of a cascade of layers each one associated to and algebraic signal model.
We show how any architecture that uses a formal notion of convolution can be stable beyond particular choices of the shift operator.
arXiv Detail & Related papers (2020-10-22T09:10:16Z) - Tensor lattice field theory with applications to the renormalization
group and quantum computing [0.0]
We discuss the successes and limitations of statistical sampling for a sequence of models studied in the context of lattice QCD.
We show that these lattice models can be reformulated using tensorial methods where the field integrations in the path-integral formalism are replaced by discrete sums.
We derive Hamiltonians suitable to perform quantum simulation experiments, for instance using cold atoms, or to be programmed on existing quantum computers.
arXiv Detail & Related papers (2020-10-13T16:46:34Z) - A Dynamical Mean-Field Theory for Learning in Restricted Boltzmann
Machines [2.8021833233819486]
We define a message-passing algorithm for computing magnetizations in Boltzmann machines.
We prove the global convergence of the algorithm under a stability criterion and compute convergence rates showing excellent agreement with numerical simulations.
arXiv Detail & Related papers (2020-05-04T15:19:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.