論文の概要: Segmentation of the Carotid Lumen and Vessel Wall using Deep Learning
and Location Priors
- arxiv url: http://arxiv.org/abs/2201.06259v1
- Date: Mon, 17 Jan 2022 07:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 05:27:49.304748
- Title: Segmentation of the Carotid Lumen and Vessel Wall using Deep Learning
and Location Priors
- Title(参考訳): 深層学習と位置予測を用いた頸動脈腔・血管壁の分節化
- Authors: Florian Thamm and Felix Denzinger and Leonhard Rist and Celia Martin
Vicario and Florian Kordon and Andreas Maier
- Abstract要約: 本稿では,U-Netアーキテクチャと位置情報を利用した画像ベースパイプラインを提案する。
本報告では頸動脈血管壁チャレンジの方法と結果について述べる。
- 参考スコア(独自算出の注目度): 6.748976209131109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this report we want to present our method and results for the Carotid
Artery Vessel Wall Segmentation Challenge. We propose an image-based pipeline
utilizing the U-Net architecture and location priors to solve the segmentation
problem at hand.
- Abstract(参考訳): 本報告では,頸動脈血管壁セグメンテーションチャレンジの方法と結果について紹介する。
そこで本研究では,u-netアーキテクチャと位置優先を利用した画像ベースパイプラインを提案する。
関連論文リスト
- Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep
Learning Framework Incorporating Laplace's Equation [10.416464319867881]
本研究では, 学習過程において, 大脳皮質の形状に関する事前知識をネットワークに組み込む, 深層学習に基づく新しい皮質分割法を提案する。
提案手法は,定量的かつ定性的に,ベースラインセグメンテーションネットワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-01T19:48:45Z) - A Trio-Method for Retinal Vessel Segmentation using Image Processing [0.0]
本稿では,三重前処理法を用いて網膜血管の分画に焦点を当てた。
2つの提案されたU-Netアーキテクチャは、すべての標準的なパフォーマンス指標で比較された。
このリアルタイムデプロイメントは、セグメンテーションと検出を向上した画像の効率的な前処理を支援する。
論文 参考訳(メタデータ) (2022-09-19T22:07:34Z) - Using the Polar Transform for Efficient Deep Learning-Based Aorta
Segmentation in CTA Images [0.0]
医用画像のセグメンテーションでは、1つの画像上に複数の楕円体をセグメンテーションする必要があることが多い。
本稿では,ニューラルネットワークのセマンティックセグメンテーション性能を改善するための一般的なアプローチを提案する。
提案手法は,技術状況に応じてセグメンテーションを達成しつつ,ロバスト性や画素レベルのリコールを改善する。
論文 参考訳(メタデータ) (2022-06-21T12:18:02Z) - Few-Shot Segmentation with Global and Local Contrastive Learning [51.677179037590356]
提案するグローバルローカルコントラスト学習を用いて,ラベルのない画像からクエリ情報を学習するための先行抽出器を提案する。
クエリー画像の以前の領域マップを生成し、オブジェクトの位置を判断し、サポート機能とのクロスインタラクションを行うためのガイダンスを作成する。
ベルとホイッスルを使わずに、提案手法は、数発のセグメンテーションタスクに対して、新しい最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-08-11T15:52:22Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
本稿では,注目機構が血管全体に誘導される低コントラストキャピラリー領域を局在させる階層的なディープネットワークを提案する。
提案手法は,底部画像における網膜動脈/静脈の分画とCT画像における肝門/肝血管の分画のベンチマークにおいて,最先端の性能を実現する。
論文 参考訳(メタデータ) (2021-05-31T06:55:43Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
セマンティックセグメンテーションのためのドメイン適応は、ソースとターゲットドメイン間の分散シフトの存在下でモデルのパフォーマンスを向上させることを目的とする。
ドメイン間のギャップを埋めるために、両ドメインで利用可能な自己教師付き深さ推定からのガイダンスを活用します。
提案手法のベンチマークタスクSYNTHIA-to-CityscapesとGTA-to-Cityscapesの有効性を実証する。
論文 参考訳(メタデータ) (2021-04-28T07:47:36Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Deep Residual 3D U-Net for Joint Segmentation and Texture Classification
of Nodules in Lung [91.3755431537592]
肺結節の分類法, そのテクスチャ分類, 肺CT像による後続の推奨について検討した。
提案手法は, 一般的なU-Netアーキテクチャファミリに基づくニューラルネットワークモデルと, 共同結節分割とそのテクスチャ分類タスクと, フォローアップレコメンデーションのためのアンサンブルベースモデルから構成される。
論文 参考訳(メタデータ) (2020-06-25T07:20:41Z) - Unsupervised Domain Adaptation for Semantic Segmentation of NIR Images
through Generative Latent Search [9.612394086478353]
近赤外画像からの皮膚のセグメンテーションの問題点を考察する。
ディープラーニングに基づく最先端セグメンテーション技術は、現在の問題では利用できない大量のラベル付きデータを必要とする。
本稿では,ソース領域のみにトレーニングされたセグメンテーションネットワークにおいて,対象画像の「アレストクローン」を探索し,プロキシとして利用する,ターゲット非依存セグメンテーションの手法を提案する。
論文 参考訳(メタデータ) (2020-06-15T19:07:55Z) - Neural Topological SLAM for Visual Navigation [112.73876869904]
意味論を生かし、近似幾何学的推論を行う空間のトポロジ的表現を設計する。
本稿では,ノイズのあるアクティベーションの下でそのような表現を構築し,維持し,使用することができる教師付き学習ベースアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2020-05-25T17:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。