論文の概要: Using the Polar Transform for Efficient Deep Learning-Based Aorta
Segmentation in CTA Images
- arxiv url: http://arxiv.org/abs/2206.10294v1
- Date: Tue, 21 Jun 2022 12:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 19:17:37.398253
- Title: Using the Polar Transform for Efficient Deep Learning-Based Aorta
Segmentation in CTA Images
- Title(参考訳): 極性変換を用いたcta画像の高効率深層学習型大動脈セグメンテーション
- Authors: Marin Ben\v{c}evi\'c, Marija Habijan, Irena Gali\'c, Danilo Babin
- Abstract要約: 医用画像のセグメンテーションでは、1つの画像上に複数の楕円体をセグメンテーションする必要があることが多い。
本稿では,ニューラルネットワークのセマンティックセグメンテーション性能を改善するための一般的なアプローチを提案する。
提案手法は,技術状況に応じてセグメンテーションを達成しつつ,ロバスト性や画素レベルのリコールを改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation often requires segmenting multiple elliptical
objects on a single image. This includes, among other tasks, segmenting vessels
such as the aorta in axial CTA slices. In this paper, we present a general
approach to improving the semantic segmentation performance of neural networks
in these tasks and validate our approach on the task of aorta segmentation. We
use a cascade of two neural networks, where one performs a rough segmentation
based on the U-Net architecture and the other performs the final segmentation
on polar image transformations of the input. Connected component analysis of
the rough segmentation is used to construct the polar transformations, and
predictions on multiple transformations of the same image are fused using
hysteresis thresholding. We show that this method improves aorta segmentation
performance without requiring complex neural network architectures. In
addition, we show that our approach improves robustness and pixel-level recall
while achieving segmentation performance in line with the state of the art.
- Abstract(参考訳): 医用画像のセグメンテーションは、しばしば単一の画像上に複数の楕円オブジェクトをセグメンテーションする必要がある。
これには、他のタスクの中でも、軸方向のCTAスライスにおける大動脈などの分断容器が含まれる。
本稿では,これらの課題におけるニューラルネットワークの意味セグメンテーション性能を向上させるための一般的なアプローチを提案し,大動脈セグメンテーションの課題に対するアプローチを検証する。
2つのニューラルネットワークのカスケードを使用して、一方はu-netアーキテクチャに基づいて粗いセグメンテーションを行い、もう一方は入力の極性画像変換に関する最終セグメンテーションを実行する。
粗いセグメンテーションの連結成分分析は極変換を構成するために使用され、同じ画像の複数の変換に関する予測はヒステリシス閾値を用いて融合される。
本手法は,複雑なニューラルネットワークアーキテクチャを必要とせずにオータセグメンテーション性能を向上させる。
さらに,本手法は,最先端のセグメンテーション性能を実現しつつ,ロバスト性と画素レベルのリコールを改善していることを示す。
関連論文リスト
- PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation [1.4680035572775534]
我々は,新たなトポロジ認識損失関数を導入し,ネットワークに対して,地上の真実と予測マップのトポロジ的相違を最小化するよう強制する。
セグメント化ネットワーク損失の文脈において,各マップのトポロジを永続画像表現によって定量化する。
提案したPI-Att損失は, 大動脈と大血管のセグメンテーションの2つの異なるデータセットで評価された。
論文 参考訳(メタデータ) (2024-08-15T09:06:49Z) - Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Variational multichannel multiclass segmentation using unsupervised
lifting with CNNs [0.0]
与えられた画像をK$の異なる領域に分割するフレキシブルなマルチクラスセグメンテーション手法を実装した。
画像の事前分解を目的とした畳み込みニューラルネットワーク(CNN)を用いる。
セグメンテーションの出発点となる情報的特徴写像の抽出に特に重点を置いている。
論文 参考訳(メタデータ) (2023-02-04T18:01:47Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
画像やビデオにおける火の局所化は、火災事故に対処するための自律システムにとって重要なステップである。
我々は,ネットワークのトレーニングに画像ラベルのみを使用する,画像中の火の弱い制御セグメント化について検討する。
CNNの中間層における特徴量の平均値は,2値セグメンテーション問題である火災セグメンテーションの場合,従来のクラスアクティベーションマッピング(CAM)法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-16T11:56:28Z) - Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation [0.0]
セグメンテーションの結果の処理と精錬は、セグメンテーションネットワークから派生した誤分類を減らすための一般的な手法である。
グラフベースのアプローチでは、グラフ内の特定の不確実点を利用し、小さなグラフ畳み込みネットワーク(GCN)に従ってセグメンテーションを洗練する。
本稿では,特徴距離に応じた新しい隣人選択機構を提案し,トレーニング手順における2つのネットワークの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-08-06T13:39:35Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Towards Interpretable Semantic Segmentation via Gradient-weighted Class
Activation Mapping [71.91734471596432]
本稿では,セマンティックセグメンテーションの解法としてSEG-GRAD-CAMを提案する。
本手法は,各画素のセグメンテーションに対する関連性を示すヒートマップを作成するために局所的に適用された広く使われているGrad-CAM法の拡張である。
論文 参考訳(メタデータ) (2020-02-26T12:32:40Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。