論文の概要: Combining Fast and Slow Thinking for Human-like and Efficient Navigation
in Constrained Environments
- arxiv url: http://arxiv.org/abs/2201.07050v1
- Date: Tue, 18 Jan 2022 15:24:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-19 14:17:16.446179
- Title: Combining Fast and Slow Thinking for Human-like and Efficient Navigation
in Constrained Environments
- Title(参考訳): 制約環境における人的・効率的なナビゲーションのための高速・スロー思考の組み合わせ
- Authors: Marianna B. Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh,
Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Taher Rahgooy, Francesca
Rossi, Biplav Srivastava, Brent Venable
- Abstract要約: 現在のAIシステムには、適応性、一般化可能性、自己制御、一貫性、常識、因果推論など、いくつかの重要な人間の能力がない。
我々は、人間の意思決定に関する既存の認知理論、例えば思考の速さと遅い理論は、これらの能力のいくつかに向けてAIシステムを前進させる方法についての洞察を与えることができると信じている。
- 参考スコア(独自算出の注目度): 43.178630971993286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current AI systems lack several important human capabilities, such as
adaptability, generalizability, self-control, consistency, common sense, and
causal reasoning. We believe that existing cognitive theories of human decision
making, such as the thinking fast and slow theory, can provide insights on how
to advance AI systems towards some of these capabilities. In this paper, we
propose a general architecture that is based on fast/slow solvers and a
metacognitive component. We then present experimental results on the behavior
of an instance of this architecture, for AI systems that make decisions about
navigating in a constrained environment. We show how combining the fast and
slow decision modalities allows the system to evolve over time and gradually
pass from slow to fast thinking with enough experience, and that this greatly
helps in decision quality, resource consumption, and efficiency.
- Abstract(参考訳): 現在のAIシステムには、適応性、一般化可能性、自己制御、一貫性、常識、因果推論など、いくつかの重要な人間の能力がない。
我々は、人間の意思決定に関する既存の認知理論、例えば思考の速さと遅い理論は、これらの能力のいくつかに向けてAIシステムを前進させる方法について洞察を与えることができると考えている。
本稿では,高速かつスローな解法とメタ認知的成分に基づく汎用アーキテクチャを提案する。
次に、制約された環境でのナビゲーションに関する決定を行うAIシステムに対して、このアーキテクチャのインスタンスの動作に関する実験結果を示す。
高速で遅い意思決定のモダリティを組み合わせることで、システムが時間とともに進化し、十分な経験を積んだゆっくりとした思考から速い思考へと徐々に移行し、意思決定の品質、リソース消費、効率に大きく寄与することを示す。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Visual Agents as Fast and Slow Thinkers [88.6691504568041]
本稿では、Fast and Slow Thinking機構を視覚エージェントに組み込んだFaSTを紹介する。
FaSTは、システム1/2モード間の動的選択にスイッチアダプタを使用する。
モデルの信頼性を調整し、新しいコンテキストデータを統合することで、不確実で目に見えないオブジェクトに取り組む。
論文 参考訳(メタデータ) (2024-08-16T17:44:02Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Fast and Slow Planning [25.91512962807549]
SOFAIは、高速または遅いと特徴付ける異なる機能と、それらを制御するメタ認知モジュールを備えた、複数の解決アプローチを利用する。
このシステムの振舞いは最先端の解法と比較され、新たに導入されたシステムは一般性の観点からより良い結果を示すことを示す。
論文 参考訳(メタデータ) (2023-03-07T23:05:38Z) - Thinking Fast and Slow in AI: the Role of Metacognition [35.114607887343105]
最先端のAIには、(人間)インテリジェンスの概念に自然に含まれる多くの能力がない。
私たちは、人間がこれらの能力を持つことができるメカニズムをよりよく研究することで、これらの能力でAIシステムを構築する方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-05T06:05:38Z) - Multi-Modal Temporal Convolutional Network for Anticipating Actions in
Egocentric Videos [22.90184887794109]
正確だが十分に速くないメソッドは、意思決定プロセスに高いレイテンシをもたらす。
これは、反応時間が重要である自律運転のようなドメインに問題を引き起こす。
本稿では,時間的畳み込みに基づくシンプルで効果的なマルチモーダルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-07-18T16:21:35Z) - Thinking Fast and Slow in AI [38.8581204791644]
本稿では,人間の意思決定の認知理論からインスピレーションを得たAI研究の方向性を提案する。
前提は、AIでまだ不足しているいくつかの人間の能力の原因について洞察を得ることができれば、AIシステムで同様の能力を得ることができるということです。
論文 参考訳(メタデータ) (2020-10-12T20:10:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。