論文の概要: Beyond modeling: NLP Pipeline for efficient environmental policy
analysis
- arxiv url: http://arxiv.org/abs/2201.07105v1
- Date: Sat, 8 Jan 2022 05:33:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-23 18:15:23.567055
- Title: Beyond modeling: NLP Pipeline for efficient environmental policy
analysis
- Title(参考訳): beyond modeling: 効率的な環境政策分析のためのnlpパイプライン
- Authors: Jordi Planas, Daniel Firebanks-Quevedo, Galina Naydenova, Ramansh
Sharma, Cristina Taylor, Kathleen Buckingham, Rong Fang
- Abstract要約: 政策分析は、森林再生に関わるアクターやルールを理解するために必要である。
自然言語処理(NLP)技術に基づく知識管理フレームワークを提案する。
NLPパイプラインの設計、各コンポーネントの最先端手法の見直し、政策分析を指向したフレームワークを構築する際の課題について論じる。
- 参考スコア(独自算出の注目度): 0.6597195879147557
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As we enter the UN Decade on Ecosystem Restoration, creating effective
incentive structures for forest and landscape restoration has never been more
critical. Policy analysis is necessary for policymakers to understand the
actors and rules involved in restoration in order to shift economic and
financial incentives to the right places. Classical policy analysis is
resource-intensive and complex, lacks comprehensive central information
sources, and is prone to overlapping jurisdictions. We propose a Knowledge
Management Framework based on Natural Language Processing (NLP) techniques that
would tackle these challenges and automate repetitive tasks, reducing the
policy analysis process from weeks to minutes. Our framework was designed in
collaboration with policy analysis experts and made to be platform-, language-
and policy-agnostic. In this paper, we describe the design of the NLP pipeline,
review the state-of-the-art methods for each of its components, and discuss the
challenges that rise when building a framework oriented towards policy
analysis.
- Abstract(参考訳): 国連生態系再生会議に入ると、森林と景観修復のための効果的なインセンティブ構造を作ることは、決して重要ではない。
政策分析は、経済や金融のインセンティブを適切な場所に移すためには、政策立案者が回復にかかわる役割や規則を理解する必要がある。
古典的な政策分析は資源集約的で複雑であり、包括的な中央情報源が欠けている。
我々は,これらの課題に対処し,繰り返しタスクを自動化する自然言語処理(NLP)技術に基づく知識管理フレームワークを提案し,政策分析プロセスを数週間から数分に短縮する。
我々のフレームワークは政策分析の専門家と共同で設計され、プラットフォーム、言語、ポリシーに依存しないものにしました。
本稿では,NLPパイプラインの設計について述べるとともに,各コンポーネントの最先端手法を概説し,政策分析を指向したフレームワークを構築する際の課題について議論する。
関連論文リスト
- Integrating problem structuring methods with formal design theory: collective water management policy design in Tunisia [0.0]
本稿では,問題構造化手法(PSM)と政策知識,概念,提案手法(P-KCP)を組み合わせることで,政策設計に革新的なアプローチを提案する。
この研究は、認知地図とバリューツリーを利用して、新しい地下水管理の実践を創出することを目的としている。
論文 参考訳(メタデータ) (2024-10-04T13:55:43Z) - Privacy Policy Analysis through Prompt Engineering for LLMs [3.059256166047627]
PAPEL (Privacy Policy Analysis through Prompt Engineering for LLMs) は、Large Language Models (LLMs) の力を利用してプライバシーポリシーの分析を自動化するフレームワークである。
これらのポリシーからの情報の抽出、アノテーション、要約を合理化し、追加のモデルトレーニングを必要とせず、アクセシビリティと理解性を高めることを目的としている。
PAPELの有効性を, (i) アノテーションと (ii) 矛盾解析の2つの応用で実証した。
論文 参考訳(メタデータ) (2024-09-23T10:23:31Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - End-to-End Neuro-Symbolic Reinforcement Learning with Textual Explanations [15.530907808235945]
構造化状態と象徴的ポリシーを共同学習するための,ニューロシンボリックな枠組みを提案する。
我々は、GPT-4に学習ポリシーと意思決定に関するテキスト説明を生成するパイプラインを設計する。
我々は,9つのアタリ課題に対するアプローチの有効性を検証するとともに,政策と意思決定に関するGPTによる説明を行う。
論文 参考訳(メタデータ) (2024-03-19T05:21:20Z) - Leveraging Large Language Models for NLG Evaluation: Advances and Challenges [57.88520765782177]
大規模言語モデル(LLM)は、コヒーレンス、クリエイティビティ、コンテキスト関連など、生成されたコンテンツ品質を評価するための新たな道を開いた。
既存のLCMに基づく評価指標を整理し、これらの手法を理解し比較するための構造化された枠組みを提供する。
本稿では, 偏見, 堅牢性, ドメイン固有性, 統一評価などの未解決課題を議論することによって, 研究者に洞察を提供し, より公平で高度なNLG評価手法を提唱することを目的とする。
論文 参考訳(メタデータ) (2024-01-13T15:59:09Z) - Practical Guidelines for the Selection and Evaluation of Natural Language Processing Techniques in Requirements Engineering [8.779031107963942]
自然言語(NL)は現在、要求自動化の基盤となっている。
多くの異なるNLPソリューション戦略が利用可能であるため、特定のREタスクに対して適切な戦略を選択することは困難である。
特に,従来のNLP,特徴ベース機械学習,言語モデルに基づく手法など,さまざまな戦略を選択する方法について議論する。
論文 参考訳(メタデータ) (2024-01-03T02:24:35Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
大規模言語モデル (LLMs) は、人工知能の進歩のためのブループリントを定式化した。
人間のフィードバックによる強化学習(RLHF)がこの追求を支える重要な技術パラダイムとして出現する。
本稿では、RLHFの枠組みを解明し、PPOの内部構造を再評価し、PPOアルゴリズムを構成する部分が政策エージェントの訓練にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2023-07-11T01:55:24Z) - Representation-Driven Reinforcement Learning [57.44609759155611]
強化学習のための表現駆動型フレームワークを提案する。
期待値の見積もりとしてポリシーを表現することにより、我々は、探索と搾取を導くために、文脈的盗賊の手法を活用する。
このフレームワークの有効性を,進化的および政策的勾配に基づくアプローチに適用することによって実証する。
論文 参考訳(メタデータ) (2023-05-31T14:59:12Z) - 'Team-in-the-loop': Ostrom's IAD framework 'rules in use' to map and measure contextual impacts of AI [0.0]
この記事では、OstromのInstitutional Analysis and Development Framework(IAD)の'rules in use'が、AIのコンテキスト分析アプローチとしてどのように開発できるかを考察する。
論文 参考訳(メタデータ) (2023-03-24T14:01:00Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
AIエコノミストフレームワークは,2段階強化学習とデータ駆動型シミュレーションを用いて,効果的な,柔軟な,解釈可能なポリシー設計を可能にする。
RLを用いて訓練されたログリニア政策は、過去の結果と比較して、公衆衛生と経済の両面から社会福祉を著しく改善することがわかった。
論文 参考訳(メタデータ) (2021-08-06T01:30:41Z) - Tree-Structured Policy based Progressive Reinforcement Learning for
Temporally Language Grounding in Video [128.08590291947544]
非トリミングビデオにおける一時的言語接地は、ビデオ理解における新たな課題である。
ヒトの粗大な意思決定パラダイムにインスパイアされた我々は、新しい木構造政策に基づくプログレッシブ強化学習フレームワークを定式化した。
論文 参考訳(メタデータ) (2020-01-18T15:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。