A Survey on Code-Based Cryptography
- URL: http://arxiv.org/abs/2201.07119v5
- Date: Wed, 17 Jul 2024 15:45:58 GMT
- Title: A Survey on Code-Based Cryptography
- Authors: Violetta Weger, Niklas Gassner, Joachim Rosenthal,
- Abstract summary: A capable quantum computer can break all currently employed asymmetric cryptosystems.
NIST has initiated in 2016 a standardization process for public-key encryption (PKE) schemes, key-encapsulation mechanisms (KEM) and digital signature schemes.
In 2023, NIST made an additional call for post-quantum signatures.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The improvements on quantum technology are threatening our daily cybersecurity, as a capable quantum computer can break all currently employed asymmetric cryptosystems. In preparation for the quantum-era the National Institute of Standards and Technology (NIST) has initiated in 2016 a standardization process for public-key encryption (PKE) schemes, key-encapsulation mechanisms (KEM) and digital signature schemes. In 2023, NIST made an additional call for post-quantum signatures. With this chapter we aim at providing a survey on code-based cryptography, focusing on PKEs and signature schemes. We cover the main frameworks introduced in code-based cryptography and analyze their security assumptions. We provide the mathematical background in a lecture notes style, with the intention of reaching a wider audience.
Related papers
- Quantum cryptography beyond key distribution: theory and experiment [0.7499722271664147]
This article surveys the theoretical and experimental developments in quantum cryptography beyond QKD.
It provides an intuitive classification of the main quantum primitives and their security levels, summarizes their possibilities and limits, and discusses their implementation with current photonic technology.
arXiv Detail & Related papers (2024-11-13T18:54:19Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Revocable Encryption, Programs, and More: The Case of Multi-Copy Security [48.53070281993869]
We show the feasibility of revocable primitives, such as revocable encryption and revocable programs.
This suggests that the stronger notion of multi-copy security is within reach in unclonable cryptography.
arXiv Detail & Related papers (2024-10-17T02:37:40Z) - Post-Quantum Cryptography Anonymous Scheme -- PQCWC: Post-Quantum Cryptography Winternitz-Chen [0.0]
Post-quantum cryptographic algorithms are primarily based on lattice-based and hash-based cryptography.
This study proposes the Post-Quantum Cryptography Winternitz-Chen (PQCWC) anonymous scheme.
arXiv Detail & Related papers (2024-09-20T00:14:20Z) - Post-Quantum Cryptography [0.0]
We talk about the various cryptographic methods that are being practiced to safeguard our information.
The future of secure communication is expected to be the implementation of quantum-safe cryptographic systems.
arXiv Detail & Related papers (2024-02-16T11:04:36Z) - Cryptography: Classical versus Post-Quantum [0.0]
We discuss the advantages of post-quantum cryptography over classical cryptography.
We conclude that the development of post-quantum cryptography is essential to guarantee the security of sensitive information in the post quantum era.
arXiv Detail & Related papers (2024-02-16T10:56:45Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - QKD Entity Source Authentication: Defense-in-Depth for Post Quantum
Cryptography [0.0]
Quantum key distribution (QKD) was conceived by Charles Bennett and Gilles Brassard in December of 1984.
NIST began a program to standardize a series of quantum resistant algorithms to replace our current encryption standards.
The goal of this paper is to examine the suitability of a hybrid QKD / PQC defense-in-depth strategy.
arXiv Detail & Related papers (2023-11-17T16:43:32Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.