Emergent Instabilities in Algorithmic Feedback Loops
- URL: http://arxiv.org/abs/2201.07203v1
- Date: Tue, 18 Jan 2022 18:58:03 GMT
- Title: Emergent Instabilities in Algorithmic Feedback Loops
- Authors: Keith Burghardt, Kristina Lerman
- Abstract summary: We explore algorithmic confounding in recommendation algorithms through teacher-student learning simulations.
Results highlight the need to account for emergent behaviors from interactions between people and algorithms.
- Score: 3.4711828357576855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithms that aid human tasks, such as recommendation systems, are
ubiquitous. They appear in everything from social media to streaming videos to
online shopping. However, the feedback loop between people and algorithms is
poorly understood and can amplify cognitive and social biases (algorithmic
confounding), leading to unexpected outcomes. In this work, we explore
algorithmic confounding in collaborative filtering-based recommendation
algorithms through teacher-student learning simulations. Namely, a student
collaborative filtering-based model, trained on simulated choices, is used by
the recommendation algorithm to recommend items to agents. Agents might choose
some of these items, according to an underlying teacher model, with new choices
then fed back into the student model as new training data (approximating online
machine learning). These simulations demonstrate how algorithmic confounding
produces erroneous recommendations which in turn lead to instability, i.e.,
wide variations in an item's popularity between each simulation realization. We
use the simulations to demonstrate a novel approach to training collaborative
filtering models that can create more stable and accurate recommendations. Our
methodology is general enough that it can be extended to other socio-technical
systems in order to better quantify and improve the stability of algorithms.
These results highlight the need to account for emergent behaviors from
interactions between people and algorithms.
Related papers
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Data-Driven H-infinity Control with a Real-Time and Efficient
Reinforcement Learning Algorithm: An Application to Autonomous
Mobility-on-Demand Systems [3.5897534810405403]
This paper presents a model-free, real-time, data-efficient Q-learning-based algorithm to solve the H$_infty$ control of linear discrete-time systems.
An adaptive optimal controller is designed and the parameters of the action and critic networks are learned online without the knowledge of the system dynamics.
arXiv Detail & Related papers (2023-09-16T05:02:41Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - New Auction Algorithms for Path Planning, Network Transport, and
Reinforcement Learning [0.0]
We introduce new auction-based algorithms for their optimal and suboptimal solution.
The algorithms are based on mathematical ideas related to competitive bidding by persons for objects.
The new algorithms have several potential advantages over existing methods.
arXiv Detail & Related papers (2022-07-19T23:31:36Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Safe Learning and Optimization Techniques: Towards a Survey of the State
of the Art [3.6954802719347413]
Safe learning and optimization deals with learning and optimization problems that avoid, as much as possible, the evaluation of non-safe input points.
A comprehensive survey of safe reinforcement learning algorithms was published in 2015, but related works in active learning and in optimization were not considered.
This paper reviews those algorithms from a number of domains including reinforcement learning, Gaussian process regression and classification, evolutionary algorithms, and active learning.
arXiv Detail & Related papers (2021-01-23T13:58:09Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Understanding the Behaviors of Optimal Deep Active Learning
Algorithms [19.65665942630067]
Active learning (AL) algorithms may achieve better performance with fewer data because the model guides the data selection process.
There is little study on what the optimal AL looks like, which would help researchers understand where their models fall short.
We present a simulated annealing algorithm to search for this optimal oracle and analyze it for several tasks.
arXiv Detail & Related papers (2020-12-29T22:56:42Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.