New Auction Algorithms for Path Planning, Network Transport, and
Reinforcement Learning
- URL: http://arxiv.org/abs/2207.09588v1
- Date: Tue, 19 Jul 2022 23:31:36 GMT
- Title: New Auction Algorithms for Path Planning, Network Transport, and
Reinforcement Learning
- Authors: Dimitri Bertsekas
- Abstract summary: We introduce new auction-based algorithms for their optimal and suboptimal solution.
The algorithms are based on mathematical ideas related to competitive bidding by persons for objects.
The new algorithms have several potential advantages over existing methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider some classical optimization problems in path planning and network
transport, and we introduce new auction-based algorithms for their optimal and
suboptimal solution. The algorithms are based on mathematical ideas that are
related to competitive bidding by persons for objects and the attendant market
equilibrium, which underlie auction processes. However, the starting point of
our algorithms is different, namely weighted and unweighted path construction
in directed graphs, rather than assignment of persons to objects. The new
algorithms have several potential advantages over existing methods: they are
empirically faster in some important contexts, such as max-flow, they are
well-suited for on-line replanning, and they can be adapted to distributed
asynchronous operation. Moreover, they allow arbitrary initial prices, without
complementary slackness restrictions, and thus are better-suited to take
advantage of reinforcement learning methods that use off-line training with
data, as well as on-line training during real-time operation. The new
algorithms may also find use in reinforcement learning contexts involving
approximation, such as multistep lookahead and tree search schemes, and/or
rollout algorithms.
Related papers
- Neural Algorithmic Reasoning Without Intermediate Supervision [21.852775399735005]
We focus on learning neural algorithmic reasoning only from the input-output pairs without appealing to the intermediate supervision.
We build a self-supervised objective that can regularise intermediate computations of the model without access to the algorithm trajectory.
We demonstrate that our approach is competitive to its trajectory-supervised counterpart on tasks from the CLRSic Algorithmic Reasoning Benchmark.
arXiv Detail & Related papers (2023-06-23T09:57:44Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - Federated Learning with a Sampling Algorithm under Isoperimetry [9.990687944474738]
Federated learning uses a set of techniques to efficiently distribute the training of a machine learning algorithm across several devices.
We propose a communication-efficient variant of Langevinvin's sample a posteriori.
arXiv Detail & Related papers (2022-06-02T08:19:03Z) - An Improved Reinforcement Learning Algorithm for Learning to Branch [12.27934038849211]
Branch-and-bound (B&B) is a general and widely used method for optimization.
In this paper, we propose a novel reinforcement learning-based B&B algorithm.
We evaluate the performance of the proposed algorithm over three public research benchmarks.
arXiv Detail & Related papers (2022-01-17T04:50:11Z) - Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner
with Evolution-Based Optimization [49.207538634692916]
We propose a new algorithm for circuit routing, named Ranking Cost, to form an efficient and trainable router.
In our method, we introduce a new set of variables called cost maps, which can help the A* router to find out proper paths.
Our algorithm is trained in an end-to-end manner and does not use any artificial data or human demonstration.
arXiv Detail & Related papers (2021-10-08T07:22:45Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.