論文の概要: Multiway Spherical Clustering via Degree-Corrected Tensor Block Models
- arxiv url: http://arxiv.org/abs/2201.07401v1
- Date: Wed, 19 Jan 2022 03:40:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 14:52:21.454089
- Title: Multiway Spherical Clustering via Degree-Corrected Tensor Block Models
- Title(参考訳): Degree-Corrected Tensor Block Modelによるマルチウェイ球面クラスタリング
- Authors: Jiaxin Hu, Miaoyan Wang
- Abstract要約: 推定精度を保証した次数補正ブロックモデルを開発した。
特に,3次以上のテンソルに対してのみ,本質的な統計的-計算的ギャップが生じることを示す。
本手法の有効性を2つのデータアプリケーションを用いて実証した。
- 参考スコア(独自算出の注目度): 8.147652597876862
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the problem of multiway clustering in the presence of unknown
degree heterogeneity. Such data problems arise commonly in applications such as
recommendation system, neuroimaging, community detection, and hypergraph
partitions in social networks. The allowance of degree heterogeneity provides
great flexibility in clustering models, but the extra complexity poses
significant challenges in both statistics and computation. Here, we develop a
degree-corrected tensor block model with estimation accuracy guarantees. We
present the phase transition of clustering performance based on the notion of
angle separability, and we characterize three signal-to-noise regimes
corresponding to different statistical-computational behaviors. In particular,
we demonstrate that an intrinsic statistical-to-computational gap emerges only
for tensors of order three or greater. Further, we develop an efficient
polynomial-time algorithm that provably achieves exact clustering under mild
signal conditions. The efficacy of our procedure is demonstrated through two
data applications, one on human brain connectome project, and another on Peru
Legislation network dataset.
- Abstract(参考訳): 未知の次数不均一性の存在下でのマルチウェイクラスタリングの問題点を考察する。
このようなデータ問題は、リコメンデーションシステム、ニューロイメージング、コミュニティ検出、ソーシャルネットワークにおけるハイパーグラフ分割などのアプリケーションで一般的に発生する。
次数の不均一性の許容はクラスタリングモデルにおいて大きな柔軟性をもたらすが、余分な複雑さは統計と計算の両方において重大な課題をもたらす。
本稿では,推定精度を保証した次数補正テンソルブロックモデルを開発した。
本稿では,角度分離性の概念に基づくクラスタリング性能の位相遷移について述べるとともに,異なる統計計算行動に対応する3つの信号対雑音レジームを特徴付ける。
特に,3次以上のテンソルに対してのみ,本質的な統計的-計算的ギャップが生じることを示す。
さらに,軽度信号条件下で正確なクラスタリングを実現する効率的な多項式時間アルゴリズムを開発した。
本手法の有効性は,ヒト脳コネクトームプロジェクトとペルー立法ネットワークデータセットの2つのデータアプリケーションを用いて実証した。
関連論文リスト
- The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Fundamental limits of community detection from multi-view data:
multi-layer, dynamic and partially labeled block models [7.778975741303385]
現代のネットワーク分析におけるマルチビューデータのコミュニティ検出について検討する。
我々は,データと潜在パラメータ間の相互情報を特徴付ける。
コミュニティ検出のための近似メッセージパッシングに基づく反復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T07:13:32Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Scalable Hierarchical Over-the-Air Federated Learning [3.8798345704175534]
この研究は、干渉とデバイスデータの不均一性の両方を扱うために設計された新しい2段階学習手法を導入する。
本稿では,提案アルゴリズムの収束を導出するための包括的数学的アプローチを提案する。
干渉とデータの不均一性にもかかわらず、提案アルゴリズムは様々なパラメータに対して高い学習精度を実現する。
論文 参考訳(メタデータ) (2022-11-29T12:46:37Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
微調整されたモデルのいくつかは、それらの間の線形経路における損失を増大させる大きな障壁を持つ。
テスト損失面上で線形に接続されているが、クラスタ外のモデルから切り離されている異なるモデルのクラスタが見つかる。
我々の研究は、損失面の幾何学がモデルを異なる関数へと導く方法を示している。
論文 参考訳(メタデータ) (2022-05-24T23:43:02Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
ブロックモデルは、ネットワーク構造データのクラスタリングとコミュニティ検出のための標準ランダムグラフモデルである。
ネットワークトポロジに基づく推定器は、モデルパラメータが一定の閾値以下である場合、スパースグラフの確率よりも大幅に向上する。
パラメータ領域全体でラベルの任意の部分で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-05-24T00:03:25Z) - Scalable Regularised Joint Mixture Models [2.0686407686198263]
多くの応用において、データは異なる基底分布を持つ潜在群にまたがるという意味で不均一である。
我々は,(i)明示的多変量特徴分布,(ii)高次元回帰モデル,(iii)潜在群ラベルの連成学習を可能にする異種データに対するアプローチを提案する。
このアプローチは明らかに高次元において有効であり、計算効率のためのデータ削減と、特徴数が大きければ鍵信号を保持する再重み付けスキームを組み合わせる。
論文 参考訳(メタデータ) (2022-05-03T13:38:58Z) - Exact Clustering in Tensor Block Model: Statistical Optimality and
Computational Limit [10.8145995157397]
高階クラスタリングは、マルチウェイデータセットの異種サブ構造を特定することを目的とする。
非計算と問題の性質は統計学と統計学の両方に重大な課題をもたらす。
論文 参考訳(メタデータ) (2020-12-18T00:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。