Virtual Coil Augmentation Technology for MRI via Deep Learning
- URL: http://arxiv.org/abs/2201.07540v1
- Date: Wed, 19 Jan 2022 11:33:38 GMT
- Title: Virtual Coil Augmentation Technology for MRI via Deep Learning
- Authors: Cailian Yang, Xianghao Liao, Yuhao Wang, Minghui Zhang, Qiegen Liu
- Abstract summary: We propose a method of using artificial intelligence to expand the channel to achieve the effect of increasing the virtual coil.
Our method achieves significantly higher image reconstruction performance than current state-of-the-art techniques.
- Score: 14.025480610981507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is a widely used medical imaging modality.
However, due to the limitations in hardware, scan time, and throughput, it is
often clinically challenging to obtain high-quality MR images. In this article,
we propose a method of using artificial intelligence to expand the channel to
achieve the effect of increasing the virtual coil. The main feature of our work
is utilizing dummy variable technology to expand the channel in both the image
and k-space domains. The high-dimensional information formed by channel
expansion is used as the prior information of parallel imaging to improve the
reconstruction effect of parallel imaging. Two features are introduced, namely
variable enhancement and sum of squares (SOS) objective function. Variable
argumentation provides the network with more high-dimensional prior
information, which is helpful for the network to extract the deep feature
in-formation of the image. The SOS objective function is employed to solve the
problem that k-space data is difficult to train while speeding up the
convergence speed. Ablation studies and experimental results demonstrate that
our method achieves significantly higher image reconstruction performance than
current state-of-the-art techniques.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Multi PILOT: Learned Feasible Multiple Acquisition Trajectories for
Dynamic MRI [0.7843343739054056]
In this study, we consider acquisition learning in the dynamic imaging setting.
We design an end-to-end pipeline for the joint optimization of multiple per-frame acquisition trajectories.
We demonstrate improved image reconstruction quality in shorter acquisition times.
arXiv Detail & Related papers (2023-03-13T14:23:39Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
We present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction.
The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent algorithm for solving inverse problems.
Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset.
arXiv Detail & Related papers (2021-11-18T11:44:04Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised
Learning [2.5581619987137048]
We propose STRESS, a self-supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions.
Our proposed method simulates an interleaved slice acquisition along the high-resolution axis on the originally acquired data to generate pairs of low- and high-resolution images.
Evaluations on both simulated and in utero data show that our proposed method outperforms other self-supervised super-resolution methods.
arXiv Detail & Related papers (2021-06-23T13:52:11Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.