Low-overhead quantum computing with the color code
- URL: http://arxiv.org/abs/2201.07806v2
- Date: Tue, 9 Apr 2024 07:10:53 GMT
- Title: Low-overhead quantum computing with the color code
- Authors: Felix Thomsen, Markus S. Kesselring, Stephen D. Bartlett, Benjamin J. Brown,
- Abstract summary: We show that an approach based on the color code can lead to considerable reductions in the resource overheads.
We propose a lattice surgery scheme that exploits the rich structure of the color-code phase to perform arbitrary pairs of commuting logical Pauli measurements in parallel.
- Score: 1.4999444543328293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault-tolerant quantum computation demands significant resources: large numbers of physical qubits must be checked for errors repeatedly to protect quantum data as logic gates are implemented in the presence of noise. We demonstrate that an approach based on the color code can lead to considerable reductions in the resource overheads compared with conventional methods, while remaining compatible with a two-dimensional layout. We propose a lattice surgery scheme that exploits the rich structure of the color-code phase to perform arbitrary pairs of commuting logical Pauli measurements in parallel while keeping the space cost low. Compared to lattice surgery schemes based on the surface code with the same code distance, our approach yields about a $3\times$ improvement in the space-time overhead, obtained from a combination of a $1.5\times$ improvement in spatial overhead together with a $2\times$ speedup due to the parallelisation of commuting logical measurements. Even when taking into account the color code's lower error threshold using current decoders, the overhead is reduced by 10\% at a physical error rate of $10^{-3}$ and by 50\% at $10^{-4}$.
Related papers
- Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Facilitating Practical Fault-tolerant Quantum Computing Based on Color Codes [0.6963971634605797]
In this work, we address several key issues to facilitate practical fault-tolerant quantum computing based on color codes.
First, by introducing decoding graphs with error-rate-related weights, we obtained the threshold of $0.57%$ of the triangular color code.
Second, our work firstly investigates the circuit-level decoding of color code lattice surgery, and gives an efficient decoding algorithm.
Third, a new state injection protocol of the triangular color code is proposed, reducing the output magic state error rate in one round of 15 to 1 distillation by two orders of magnitude compared to a previous rough protocol.
arXiv Detail & Related papers (2023-09-11T03:56:18Z) - Optimization tools for distance-preserving flag fault-tolerant error correction [0.3999851878220878]
We develop tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC)
Our techniques include the compact lookup table construction, the Meet-in-the-Middle technique, the adaptive time decoding for flag FTQEC, and the separated $X$ and $Z$ counting technique.
We evaluate the performance of our tools using numerical simulation of hexagonal color codes of 3, 5, 7, and 9 under circuit-level noise.
arXiv Detail & Related papers (2023-06-22T13:17:03Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps.
We analyze an unconventional surface code based on multi-body interactions between superconducting transmon qubits.
Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs.
arXiv Detail & Related papers (2022-11-11T18:00:30Z) - A local pre-decoder to reduce the bandwidth and latency of quantum error
correction [3.222802562733787]
A fault-tolerant quantum computer will be supported by a classical decoding system interfacing with quantum hardware.
We propose a local pre-decoder', which makes greedy corrections to reduce the amount of syndrome data sent to a standard matching decoder.
We find substantial improvements in the runtime of the global decoder and the communication bandwidth by using the pre-decoder.
arXiv Detail & Related papers (2022-08-09T11:01:56Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.