Facilitating Practical Fault-tolerant Quantum Computing Based on Color Codes
- URL: http://arxiv.org/abs/2309.05222v5
- Date: Sun, 2 Jun 2024 05:00:12 GMT
- Title: Facilitating Practical Fault-tolerant Quantum Computing Based on Color Codes
- Authors: Jiaxuan Zhang, Yu-Chun Wu, Guo-Ping Guo,
- Abstract summary: In this work, we address several key issues to facilitate practical fault-tolerant quantum computing based on color codes.
First, by introducing decoding graphs with error-rate-related weights, we obtained the threshold of $0.57%$ of the triangular color code.
Second, our work firstly investigates the circuit-level decoding of color code lattice surgery, and gives an efficient decoding algorithm.
Third, a new state injection protocol of the triangular color code is proposed, reducing the output magic state error rate in one round of 15 to 1 distillation by two orders of magnitude compared to a previous rough protocol.
- Score: 0.6963971634605797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color code is a promising topological code for fault-tolerant quantum computing. Insufficient research on the color code has delayed its practical application. In this work, we address several key issues to facilitate practical fault-tolerant quantum computing based on color codes. First, by introducing decoding graphs with error-rate-related weights, we obtained the threshold of $0.47\%$ of the 6,6,6 triangular color code under the standard circuit-level noise model, narrowing the gap to that of the surface code. Second, our work firstly investigates the circuit-level decoding of color code lattice surgery, and gives an efficient decoding algorithm, which is crucial for performing logical operations in a quantum computer with two-dimensional architectures. Lastly, a new state injection protocol of the triangular color code is proposed, reducing the output magic state error rate in one round of 15 to 1 distillation by two orders of magnitude compared to a previous rough protocol. We have also proven that our protocol offers the lowest logical error rates for state injection among all possible CSS codes.
Related papers
- Improving threshold for fault-tolerant color code quantum computing by flagged weight optimization [0.9002260638342727]
thresholds of color codes under circuit-level noise are relatively low because of their high-weight stabilizer generators.
We propose a method to suppress the impact of such errors using conditional error probabilities conditioned on the measurement outcomes of flag qubits.
This method can also be applied to other weight-based decoders, making the color codes more promising for the candidate of experimental implementation of QEC.
arXiv Detail & Related papers (2024-02-21T17:40:51Z) - The domain wall color code [0.7224497621488285]
We introduce the domain wall color code, a new variant of the quantum error-correcting color code.
The code exhibits exceptionally high code-capacity error thresholds for qubits subject to biased noise.
arXiv Detail & Related papers (2023-06-30T18:00:06Z) - Decoding quantum color codes with MaxSAT [4.29377170477633]
We propose a novel decoder for quantum color codes using a formulation as a MaxSAT problem based on the LightsOut puzzle.
We show that the decoding performance of the proposed decoder achieves state-of-the-art decoding performance on color codes.
arXiv Detail & Related papers (2023-03-24T19:00:02Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Rescaling decoder for 2D topological quantum color codes on 4.8.8
lattices [0.0]
Topological codes, such as the surface code or color codes, are leading candidates for practical scalable quantum error correction.
We study the efficiency of a decoder for 2D topological color codes on the 4.8.8 lattice.
arXiv Detail & Related papers (2021-12-17T15:56:22Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Trellis Decoding For Qudit Stabilizer Codes And Its Application To Qubit
Topological Codes [3.9962751777898955]
We show that trellis decoders have strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed.
The modified decoder works for any stabilizer code $S$ and separates into two parts: a one-time, offline which builds a compact, graphical representation of the normalizer of the code, $Sperp$, and a quick, parallel, online computation using the Viterbi algorithm.
arXiv Detail & Related papers (2021-06-15T16:01:42Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z) - Efficient color code decoders in $d\geq 2$ dimensions from toric code
decoders [77.34726150561087]
We prove that the Restriction Decoder successfully corrects errors in the color code if and only if the corresponding toric code decoding succeeds.
We numerically estimate the Restriction Decoder threshold for the color code in two and three dimensions against the bit-flip and phase-flip noise.
arXiv Detail & Related papers (2019-05-17T17:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.