論文の概要: Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2201.07912v1
- Date: Wed, 19 Jan 2022 23:25:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-21 13:57:30.681556
- Title: Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization
- Title(参考訳): 確率的最適化を用いた連合学習のための通信効率の高いデバイススケジューリング
- Authors: Jake Perazzone, Shiqiang Wang, Mingyue Ji, Kevin Chan
- Abstract要約: Time Learning(FL)は、ユーザのローカルデータセットをプライバシ保存形式で利用する分散機械学習において有用なツールである。
本稿では,非効率収束境界アルゴリズムを提案する。
また、電力制約下での収束境界と平均通信の関数を最小化する新しい選択および電力割当アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 26.559267845906746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a useful tool in distributed machine learning that
utilizes users' local datasets in a privacy-preserving manner. When deploying
FL in a constrained wireless environment; however, training models in a
time-efficient manner can be a challenging task due to intermittent
connectivity of devices, heterogeneous connection quality, and non-i.i.d. data.
In this paper, we provide a novel convergence analysis of non-convex loss
functions using FL on both i.i.d. and non-i.i.d. datasets with arbitrary device
selection probabilities for each round. Then, using the derived convergence
bound, we use stochastic optimization to develop a new client selection and
power allocation algorithm that minimizes a function of the convergence bound
and the average communication time under a transmit power constraint. We find
an analytical solution to the minimization problem. One key feature of the
algorithm is that knowledge of the channel statistics is not required and only
the instantaneous channel state information needs to be known. Using the
FEMNIST and CIFAR-10 datasets, we show through simulations that the
communication time can be significantly decreased using our algorithm, compared
to uniformly random participation.
- Abstract(参考訳): フェデレートラーニング(FL)は、ユーザのローカルデータセットをプライバシ保護の方法で活用する分散機械学習において有用なツールである。
しかし、FLを制約された無線環境にデプロイする場合、デバイス間の断続接続、異種接続品質、および非i.d.データにより、トレーニングモデルを時間効率で行うことは難しい課題である。
本稿では,各ラウンド毎に任意のデバイス選択確率を持つ i.i.d. および non-i.d. データセット上で fl を用いた非凸損失関数の新しい収束解析を行う。
次に、導出収束境界を用いて確率的最適化を行い、伝送電力制約下での収束境界と平均通信時間の関数を最小化する新しいクライアント選択と電力割当アルゴリズムを開発する。
最小化問題に対する分析的な解決策を見つける。
このアルゴリズムの重要な特徴の1つは、チャネル統計の知識は不要であり、瞬時チャネル状態情報のみを知る必要があることである。
FEMNIST と CIFAR-10 のデータセットを用いて,本アルゴリズムを用いて,一様ランダムな参加よりも通信時間を大幅に削減できることを示す。
関連論文リスト
- Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Time-triggered Federated Learning over Wireless Networks [48.389824560183776]
無線ネットワーク上での時系列FLアルゴリズム(TT-Fed)を提案する。
提案したTT-Fedアルゴリズムは, それぞれ最大12.5%, 5%の収束試験精度を向上する。
論文 参考訳(メタデータ) (2022-04-26T16:37:29Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
フェデレーテッド・ラーニング(FL)は、ワイヤレスエッジデバイスに機械学習を分散するための一般的な方法論として登場した。
本研究では,FLにおけるモデル性能と資源利用のトレードオフを最適化することを検討する。
提案したStoFedDelAvは、FL計算ステップに局所言語モデルコンバインダーを組み込む。
論文 参考訳(メタデータ) (2021-12-27T22:30:15Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - User Scheduling for Federated Learning Through Over-the-Air Computation [22.853678584121862]
FL(Federated Learning)と呼ばれる新しい機械学習技術は、エッジデバイスにおけるデータの保存と、学習プロセスにおけるMLモデルパラメータの交換のみを目的としている。
FLは通信ニーズを減らすだけでなく、地域のプライバシーを守るのにも役立ちます。
AirCompは、アナログ変調を用いて複数のデバイスが同時にデータを送信できるようにすることで、データを送信しながら計算することができる。
論文 参考訳(メタデータ) (2021-08-05T23:58:15Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z) - Delay Minimization for Federated Learning Over Wireless Communication
Networks [172.42768672943365]
無線通信ネットワーク上でのフェデレーション学習(FL)における遅延計算の問題について検討した。
最適解を得るために,二項探索アルゴリズムを提案する。
シミュレーションの結果,提案アルゴリズムは従来のFL法と比較して最大27.3%遅延を低減できることがわかった。
論文 参考訳(メタデータ) (2020-07-05T19:00:07Z) - Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC [21.267954799102874]
Federated Learning(FL)は、データ分散を維持しながらモデルを集中的にトレーニングできる、高度に追求された機械学習技術である。
重み付き和データレートを最大化するために、非直交多重アクセス(NOMA)設定を用いた新しいスケジューリングポリシーと電力割当方式を提案する。
シミュレーションの結果,提案手法は,NOMAベースの無線ネットワークにおいて高いFLテスト精度を実現するのに有効であることがわかった。
論文 参考訳(メタデータ) (2020-06-21T23:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。