論文の概要: Communication-Efficient Device Scheduling for Federated Learning Using Lyapunov Optimization
- arxiv url: http://arxiv.org/abs/2503.00569v1
- Date: Sat, 01 Mar 2025 17:30:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:22:00.727024
- Title: Communication-Efficient Device Scheduling for Federated Learning Using Lyapunov Optimization
- Title(参考訳): Lyapunov最適化を用いたフェデレーション学習のための通信効率の良いデバイススケジューリング
- Authors: Jake B. Perazzone, Shiqiang Wang, Mingyue Ji, Kevin Chan,
- Abstract要約: フェデレートラーニング(FL)は、データを集中的に収集することなく、分散データ上で機械学習モデルのトレーニングを可能にする便利なツールである。
FLを制約された無線環境にデプロイする場合、接続性、断続的な接続品質、および非i.d.データは、機械学習モデルのトレーニングを著しく遅くする。
- 参考スコア(独自算出の注目度): 35.34598274073446
- License:
- Abstract: Federated learning (FL) is a useful tool that enables the training of machine learning models over distributed data without having to collect data centrally. When deploying FL in constrained wireless environments, however, intermittent connectivity of devices, heterogeneous connection quality, and non-i.i.d. data can severely slow convergence. In this paper, we consider FL with arbitrary device participation probabilities for each round and show that by weighing each device's update by the reciprocal of their per-round participation probability, we can guarantee convergence to a stationary point. Our bound applies to non-convex loss functions and non-i.i.d. datasets and recovers state-of-the-art convergence rates for both full and uniform partial participation, including linear speedup, with only a single-sided learning rate. Then, using the derived convergence bound, we develop a new online client selection and power allocation algorithm that utilizes the Lyapunov drift-plus-penalty framework to opportunistically minimize a function of the convergence bound and the average communication time under a transmit power constraint. We use optimization over manifold techniques to obtain a solution to the minimization problem. Thanks to the Lyapunov framework, one key feature of the algorithm is that knowledge of the channel distribution is not required and only the instantaneous channel state information needs to be known. Using the CIFAR-10 dataset with varying levels of data heterogeneity, we show through simulations that the communication time can be significantly decreased using our algorithm compared to uniformly random participation, especially for heterogeneous channel conditions.
- Abstract(参考訳): フェデレートラーニング(FL)は、データを集中的に収集することなく、分散データ上で機械学習モデルのトレーニングを可能にする便利なツールである。
しかし、制約のある無線環境にFLをデプロイする際には、デバイス間の断続接続、異種接続品質、および非i.d.データの相互接続が著しく遅くなる。
本稿では,各ラウンド毎の任意のデバイス参加確率を持つFLについて検討し,各ラウンド毎の参加確率の相反によって各デバイスの更新を評価することにより,定常点への収束を保証できることを示す。
我々の境界は、非凸損失関数と非凸損失関数に適用され、一側学習率のみを含む線形スピードアップを含む、完全および一様部分参加の最先端収束率を回復する。
そして、導出した収束境界を用いて、Lyapunovのドリフト・プラス・ペナルティ・フレームワークを利用して、送信電力制約の下での収束境界と平均通信時間の関数を均等に最小化する新しいオンラインクライアント選択と電力割当アルゴリズムを開発する。
最小化問題に対する解を得るために,多様体技術に対する最適化を用いる。
Lyapunovフレームワークのおかげで、このアルゴリズムの重要な特徴の1つは、チャネル分布の知識は不要であり、瞬時チャネル状態情報のみを知る必要があることである。
CIFAR-10データセットを用いたシミュレーションにより,不均質なチャネル条件において,不均質なチャネル条件に対して,一様にランダムな参加に比べて通信時間を大幅に削減できることが示唆された。
関連論文リスト
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
フェデレートラーニング(FL)により、分散クライアントは、生データを互いに共有することなく、機械学習モデルを協調的にトレーニングできる。
モデルのサイズが大きくなるにつれて、送信帯域の制限によるトレーニングのレイテンシが低下し、個人情報が劣化すると同時に、差分プライバシ(DP)保護を使用する。
我々は、収束性能を犠牲にすることなく、トレーニング効率を向上させるために、FLフレームワーク無線チャネルのスペース化を提案する。
論文 参考訳(メタデータ) (2023-04-09T05:21:15Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
デバイス間の限られた通信資源、帯域幅とエネルギー、およびデータ不均一性は、連邦学習(FL)の主要なボトルネックである
まず、部分モデルアグリゲーション(PMA)を用いた新しいFLフレームワークを考案する。
提案されたPMA-FLは、2つの典型的な異種データセットにおいて2.72%と11.6%の精度を改善する。
論文 参考訳(メタデータ) (2022-04-20T19:09:52Z) - SlimFL: Federated Learning with Superposition Coding over Slimmable
Neural Networks [56.68149211499535]
フェデレートラーニング(FL)は、デバイスの分散コンピューティング機能を活用した効率的なコミュニケーションとコンピューティングのための重要な実現手段である。
本稿では、FLと幅調整可能なスリムブルニューラルネットワーク(SNN)を統合した新しい学習フレームワークを提案する。
局所モデル更新のためのグローバルモデル集約と重ね合わせ訓練(ST)に重ね合わせ符号化(SC)を併用した通信およびエネルギー効率の高いSNNベースFL(SlimFL)を提案する。
論文 参考訳(メタデータ) (2022-03-26T15:06:13Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time Learning(FL)は、ユーザのローカルデータセットをプライバシ保存形式で利用する分散機械学習において有用なツールである。
本稿では,非効率収束境界アルゴリズムを提案する。
また、電力制約下での収束境界と平均通信の関数を最小化する新しい選択および電力割当アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-01-19T23:25:24Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
フェデレーテッド・ラーニング(FL)は、ワイヤレスエッジデバイスに機械学習を分散するための一般的な方法論として登場した。
本研究では,FLにおけるモデル性能と資源利用のトレードオフを最適化することを検討する。
提案したStoFedDelAvは、FL計算ステップに局所言語モデルコンバインダーを組み込む。
論文 参考訳(メタデータ) (2021-12-27T22:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。