Physics-informed neural networks for modeling rate- and
temperature-dependent plasticity
- URL: http://arxiv.org/abs/2201.08363v1
- Date: Thu, 20 Jan 2022 18:49:27 GMT
- Title: Physics-informed neural networks for modeling rate- and
temperature-dependent plasticity
- Authors: Rajat Arora, Pratik Kakkar, Biswadip Dey, Amit Chakraborty
- Abstract summary: This work presents a physics-informed neural network based framework to model the strain-rate and temperature dependence of the deformation fields in elastic-viscoplastic solids.
- Score: 3.1861308132183384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a physics-informed neural network based framework to model
the strain-rate and temperature dependence of the deformation fields
(displacement, stress, plastic strain) in elastic-viscoplastic solids. A
detailed discussion on the construction of the physics-based loss criterion
along with a brief outline on ways to avoid unbalanced back-propagated
gradients during training is also presented. We also present a simple strategy
with no added computational complexity for choosing scalar weights that balance
the interplay between different terms in the composite loss. Moreover, we also
highlight a fundamental challenge involving selection of appropriate model
outputs so that the mechanical problem can be faithfully solved using neural
networks. Finally, the effectiveness of the proposed framework is demonstrated
by studying two test problems modeling the elastic-viscoplastic deformation in
solids at different strain-rates and temperatures, respectively.
Related papers
- Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks [0.0]
We present the extension and application of an iCANN to the inelastic phenomena of plasticity.
We learn four feed-forward networks in combination with a recurrent neural network and use the second Piola-Kirchhoff stress measure for training.
We observe already satisfactory results for training on one load case only while extremely precise agreement is found for an increase in load cases.
arXiv Detail & Related papers (2024-07-27T19:19:42Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
arXiv Detail & Related papers (2024-04-05T12:40:03Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Physics-informed UNets for Discovering Hidden Elasticity in
Heterogeneous Materials [0.0]
We develop a novel UNet-based neural network model for inversion in elasticity (El-UNet)
We show superior performance, both in terms of accuracy and computational cost, by El-UNet compared to fully-connected physics-informed neural networks.
arXiv Detail & Related papers (2023-06-01T23:35:03Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Physics-Informed Neural Network for Modelling the Thermochemical Curing
Process of Composite-Tool Systems During Manufacture [11.252083314920108]
We present a PINN to simulate thermochemical evolution of a composite material on a tool undergoing cure in an autoclave.
We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions.
The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions.
arXiv Detail & Related papers (2020-11-27T00:56:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.