論文の概要: A Visual Analytics Approach to Building Logistic Regression Models and
its Application to Health Records
- arxiv url: http://arxiv.org/abs/2201.08429v1
- Date: Thu, 20 Jan 2022 19:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-24 14:34:29.277456
- Title: A Visual Analytics Approach to Building Logistic Regression Models and
its Application to Health Records
- Title(参考訳): ロジスティック回帰モデル構築のための視覚的分析手法とその健康記録への応用
- Authors: Erasmo Artur and Rosane Minghim
- Abstract要約: 本研究では,高次元データセットにおける回帰モデルの生成,評価,適用のためのオープンな統一手法を提案する。
このアプローチは、属性に対する広い相関パノラマを公開することに基づいており、ユーザーは関連する属性を選択して予測モデルを構築して評価することができる。
我々は、コビッド19やその他の人工的および実際の健康記録データの解析に、我々のフレームワークを応用して、UCRegの有効性と効率を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multidimensional data analysis has become increasingly important in many
fields, mainly due to current vast data availability and the increasing demand
to extract knowledge from it. In most applications, the role of the final user
is crucial to build proper machine learning models and to explain the patterns
found in data. In this paper, we present an open unified approach for
generating, evaluating, and applying regression models in high-dimensional data
sets within a user-guided process. The approach is based on exposing a broad
correlation panorama for attributes, by which the user can select relevant
attributes to build and evaluate prediction models for one or more contexts. We
name the approach UCReg (User-Centered Regression). We demonstrate
effectiveness and efficiency of UCReg through the application of our framework
to the analysis of Covid-19 and other synthetic and real health records data.
- Abstract(参考訳): 多次元データ分析は多くの分野でますます重要になってきており、その主な原因は、現在の膨大なデータ可用性と、それから知識を抽出する需要の増加である。
ほとんどのアプリケーションでは、最終ユーザの役割は、適切な機械学習モデルを構築し、データに見られるパターンを説明するために不可欠である。
本稿では,ユーザ誘導プロセス内の高次元データセットにおける回帰モデルの生成,評価,適用に関するオープン統一アプローチを提案する。
このアプローチは、属性の広い相関パノラマを公開することに基づいており、ユーザーは関連する属性を選択して、1つ以上のコンテキストの予測モデルを構築し評価することができる。
アプローチを UCReg (User-Centered Regression) と呼ぶ。
我々は,コビッド19やその他の人工的および実際の健康記録データの解析に枠組みを適用し,UCRegの有効性と効率を実証した。
関連論文リスト
- A Statistical Framework for Data-dependent Retrieval-Augmented Models [46.781026675083254]
最新のMLシステムは、最終的な予測を強化するために、追加の関連情報によって入力インスタンスを増大させる。
本研究では,1)データ依存メトリックを用いて大規模コーパスから関連する情報を識別するエム検索器,2)検索した情報とともに入力インスタンスを消費し最終的な予測を行うエム予測器,の2つのコンポーネントを用いたモデルについて検討する。
論文 参考訳(メタデータ) (2024-08-27T20:51:06Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Dataset Regeneration for Sequential Recommendation [69.93516846106701]
DR4SRと呼ばれるモデルに依存しないデータセット再生フレームワークを用いて、理想的なトレーニングデータセットを開発するためのデータ中心のパラダイムを提案する。
データ中心のパラダイムの有効性を示すために、我々はフレームワークを様々なモデル中心の手法と統合し、4つの広く採用されているデータセット間で大きなパフォーマンス改善を観察する。
論文 参考訳(メタデータ) (2024-05-28T03:45:34Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparseは、一般化された加法モデルのファミリーから生まれた、新しい機械学習モデルである。
トレーニング中の非線形特徴選択プロセスを通じて、スパシティを促進する。
これにより、予測性能を犠牲にすることなく、モデル空間の改善による解釈可能性を保証する。
論文 参考訳(メタデータ) (2024-03-17T22:44:36Z) - DACO: Towards Application-Driven and Comprehensive Data Analysis via Code Generation [83.30006900263744]
データ分析は、詳細な研究と決定的な洞察を生み出すための重要な分析プロセスである。
LLMのコード生成機能を活用した高品質な応答アノテーションの自動生成を提案する。
我々のDACO-RLアルゴリズムは、57.72%のケースにおいて、SFTモデルよりも有用な回答を生成するために、人間のアノテータによって評価される。
論文 参考訳(メタデータ) (2024-03-04T22:47:58Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Multidimensional Item Response Theory in the Style of Collaborative
Filtering [0.8057006406834467]
本稿では,多次元項目応答理論(MIRT)に対する機械学習手法を提案する。
協調フィルタリングに触発されて、多くのMIRTモデルを含むモデルの一般的なクラスを定義します。
本稿では, 個人モデルとクロスバリデーションを推定し, 最適動作モデルを選択するために, ペナル化結合最大度(JML)の使用について論じる。
論文 参考訳(メタデータ) (2023-01-03T00:56:27Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。