Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming
- URL: http://arxiv.org/abs/2201.08484v1
- Date: Thu, 20 Jan 2022 22:54:32 GMT
- Title: Iterated Reasoning with Mutual Information in Cooperative and Byzantine
Decentralized Teaming
- Authors: Sachin Konan, Esmaeil Seraj, Matthew Gombolay
- Abstract summary: We show that reformulating an agent's policy to be conditional on the policies of its teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing under Policy Gradient (PG)
Our approach, InfoPG, outperforms baselines in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized cooperative MARL tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information sharing is key in building team cognition and enables
coordination and cooperation. High-performing human teams also benefit from
acting strategically with hierarchical levels of iterated communication and
rationalizability, meaning a human agent can reason about the actions of their
teammates in their decision-making. Yet, the majority of prior work in
Multi-Agent Reinforcement Learning (MARL) does not support iterated
rationalizability and only encourage inter-agent communication, resulting in a
suboptimal equilibrium cooperation strategy. In this work, we show that
reformulating an agent's policy to be conditional on the policies of its
neighboring teammates inherently maximizes Mutual Information (MI) lower-bound
when optimizing under Policy Gradient (PG). Building on the idea of
decision-making under bounded rationality and cognitive hierarchy theory, we
show that our modified PG approach not only maximizes local agent rewards but
also implicitly reasons about MI between agents without the need for any
explicit ad-hoc regularization terms. Our approach, InfoPG, outperforms
baselines in learning emergent collaborative behaviors and sets the
state-of-the-art in decentralized cooperative MARL tasks. Our experiments
validate the utility of InfoPG by achieving higher sample efficiency and
significantly larger cumulative reward in several complex cooperative
multi-agent domains.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
We propose a model-based consensus mechanism to explicitly coordinate multiple agents.
The proposed Multi-agent Goal Imagination (MAGI) framework guides agents to reach consensus with an Imagined common goal.
We show that such efficient consensus mechanism can guide all agents cooperatively reaching valuable future states.
arXiv Detail & Related papers (2024-03-05T18:07:34Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
We propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios.
RACA takes advantage of a graph-based encoder relation to encode the topological structure between agents.
Our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
arXiv Detail & Related papers (2022-06-02T03:39:27Z) - Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation [9.854975702211165]
We propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge.
First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations.
Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions.
arXiv Detail & Related papers (2022-03-06T07:42:43Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
Multi-agent reinforcement learning often suffers from the exponentially larger action space caused by a large number of agents.
We propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for the fully cooperative multi-agent problems.
arXiv Detail & Related papers (2021-10-14T10:43:47Z) - Modeling the Interaction between Agents in Cooperative Multi-Agent
Reinforcement Learning [2.9360071145551068]
We propose a novel cooperative MARL algorithm named as interactive actor-critic(IAC)
IAC models the interaction of agents from perspectives of policy and value function.
We extend the value decomposition methods to continuous control tasks and evaluate IAC on benchmark tasks including classic control and multi-agent particle environments.
arXiv Detail & Related papers (2021-02-10T01:58:28Z) - Cooperative and Competitive Biases for Multi-Agent Reinforcement
Learning [12.676356746752893]
Training a multi-agent reinforcement learning (MARL) algorithm is more challenging than training a single-agent reinforcement learning algorithm.
We propose an algorithm that boosts MARL training using the biased action information of other agents based on a friend-or-foe concept.
We empirically demonstrate that our algorithm outperforms existing algorithms in various mixed cooperative-competitive environments.
arXiv Detail & Related papers (2021-01-18T05:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.