Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation
- URL: http://arxiv.org/abs/2203.02896v1
- Date: Sun, 6 Mar 2022 07:42:43 GMT
- Title: Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation
- Authors: Donghan Xie, Zhi Wang, Chunlin Chen, Daoyi Dong
- Abstract summary: We propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge.
First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations.
Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions.
- Score: 9.854975702211165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent settings remain a fundamental challenge in the reinforcement
learning (RL) domain due to the partial observability and the lack of accurate
real-time interactions across agents. In this paper, we propose a new method
based on local communication learning to tackle the multi-agent RL (MARL)
challenge within a large number of agents coexisting. First, we design a new
communication protocol that exploits the ability of depthwise convolution to
efficiently extract local relations and learn local communication between
neighboring agents. To facilitate multi-agent coordination, we explicitly learn
the effect of joint actions by taking the policies of neighboring agents as
inputs. Second, we introduce the mean-field approximation into our method to
reduce the scale of agent interactions. To more effectively coordinate
behaviors of neighboring agents, we enhance the mean-field approximation by a
supervised policy rectification network (PRN) for rectifying real-time agent
interactions and by a learnable compensation term for correcting the
approximation bias. The proposed method enables efficient coordination as well
as outperforms several baseline approaches on the adaptive traffic signal
control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Decentralized Adaptive Formation via Consensus-Oriented Multi-Agent
Communication [9.216867817261493]
We propose a novel Consensus-based Decentralized Adaptive Formation (Cons-DecAF) framework.
Specifically, we develop a novel multi-agent reinforcement learning method, Consensus-oriented Multi-Agent Communication (ConsMAC)
Instead of pre-assigning specific positions of agents, we employ a displacement-based formation by Hausdorff distance to significantly improve the formation efficiency.
arXiv Detail & Related papers (2023-07-23T10:41:17Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - RACA: Relation-Aware Credit Assignment for Ad-Hoc Cooperation in
Multi-Agent Deep Reinforcement Learning [55.55009081609396]
We propose a novel method, called Relation-Aware Credit Assignment (RACA), which achieves zero-shot generalization in ad-hoc cooperation scenarios.
RACA takes advantage of a graph-based encoder relation to encode the topological structure between agents.
Our method outperforms baseline methods on the StarCraftII micromanagement benchmark and ad-hoc cooperation scenarios.
arXiv Detail & Related papers (2022-06-02T03:39:27Z) - Coordinating Policies Among Multiple Agents via an Intelligent
Communication Channel [81.39444892747512]
In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another.
We propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' collective performance.
arXiv Detail & Related papers (2022-05-21T14:11:33Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Provably Efficient Cooperative Multi-Agent Reinforcement Learning with
Function Approximation [15.411902255359074]
We show that it is possible to achieve near-optimal no-regret learning even with a fixed constant communication budget.
Our work generalizes several ideas from the multi-agent contextual and multi-armed bandit literature to MDPs and reinforcement learning.
arXiv Detail & Related papers (2021-03-08T18:51:00Z) - Inference-Based Deterministic Messaging For Multi-Agent Communication [1.8275108630751844]
We study learning in matrix-based signaling games to show that decentralized methods can converge to a suboptimal policy.
We then propose a modification to the messaging policy, in which the sender deterministically chooses the best message that helps the receiver to infer the sender's observation.
arXiv Detail & Related papers (2021-03-03T03:09:22Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
arXiv Detail & Related papers (2020-06-11T14:07:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.