論文の概要: Modality Bank: Learn multi-modality images across data centers without
sharing medical data
- arxiv url: http://arxiv.org/abs/2201.08955v1
- Date: Sat, 22 Jan 2022 02:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-28 10:51:58.197312
- Title: Modality Bank: Learn multi-modality images across data centers without
sharing medical data
- Title(参考訳): モダリティバンク:医療データを共有せずにデータセンター間でマルチモダリティ画像を学ぶ
- Authors: Qi Chang, Hui Qu, Zhennan Yan, Yunhe Gao, Lohendran Baskaran and
Dimitris Metaxas
- Abstract要約: 我々は、ModalityBankというプライバシー保護型分散多モード適応学習アーキテクチャを提案する。
提案手法は,共通のドメインに依存しないネットワークに挿入された効果的なドメイン固有変調パラメータの集合を学習できる。
- 参考スコア(独自算出の注目度): 10.311210383030005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modality images have been widely used and provide comprehensive
information for medical image analysis. However, acquiring all modalities among
all institutes is costly and often impossible in clinical settings. To leverage
more comprehensive multi-modality information, we propose a privacy secured
decentralized multi-modality adaptive learning architecture named ModalityBank.
Our method could learn a set of effective domain-specific modulation parameters
plugged into a common domain-agnostic network. We demonstrate by switching
different sets of configurations, the generator could output high-quality
images for a specific modality. Our method could also complete the missing
modalities across all data centers, thus could be used for modality completion
purposes. The downstream task trained from the synthesized multi-modality
samples could achieve higher performance than learning from one real data
center and achieve close-to-real performance compare with all real images.
- Abstract(参考訳): マルチモダリティ画像は広く使われており、医用画像分析に包括的な情報を提供している。
しかし, 臨床現場では, 全施設間のモダリティの獲得は費用がかかり, しばしば不可能となる。
本稿では,より包括的なマルチモダリティ情報を活用するために,プライバシ保護型分散マルチモダリティ適応学習アーキテクチャmodalitybankを提案する。
提案手法は,共通のドメインに依存しないネットワークに挿入された効果的なドメイン固有変調パラメータの集合を学習できる。
異なる構成のセットを切り替えることで、特定のモードで高品質な画像を出力できることを示した。
また,本手法は,全データセンタの欠落したモーダリティを補完するので,モーダリティ補完に使用できる。
合成したマルチモダリティサンプルからトレーニングしたダウンストリームタスクは、1つのデータセンターから学習するよりも高いパフォーマンスを達成でき、実際のすべての画像と比較できる。
関連論文リスト
- Deep Multimodal Collaborative Learning for Polyp Re-Identification [4.4028428688691905]
大腸内視鏡によるポリープ再同定は、大きなギャラリーの同じポリープと異なるカメラで撮影された異なるビューの画像とを一致させることを目的としている。
ImageNetデータセットでトレーニングされたCNNモデルを直接適用する従来のオブジェクトReIDの手法は、不満足な検索性能をもたらす。
本稿では,ポリプ再同定のためのDMCLという新しい多モーダル協調学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-12T04:05:19Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Unified Multi-Modal Image Synthesis for Missing Modality Imputation [23.681228202899984]
そこで本研究では,モダリティの欠如を抑えるために,新しいマルチモーダル画像合成法を提案する。
提案手法は, 各種合成タスクの処理に有効であり, 従来の手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-11T16:59:15Z) - Learning Multimodal Data Augmentation in Feature Space [65.54623807628536]
LeMDAは、機能空間におけるマルチモーダルデータを共同で拡張することを自動的に学習する、使い易い方法である。
我々はLeMDAがマルチモーダルディープラーニングアーキテクチャの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-29T20:39:36Z) - Generalized Multi-Task Learning from Substantially Unlabeled
Multi-Source Medical Image Data [11.061381376559053]
MultiMixは、病気の分類と解剖学的セグメンテーションを半教師付きで共同で学習する、新しいマルチタスク学習モデルである。
トレーニングセットにおける多ソースラベル付きデータの多量化実験により,MultiMixの有効性が確認された。
論文 参考訳(メタデータ) (2021-10-25T18:09:19Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
プライバシーとセキュリティを守るために拡張可能で弾力性のある学習フレームワークを提案します。
提案するフレームワークは分散Asynchronized Discriminator Generative Adrial Networks (AsynDGAN) である。
論文 参考訳(メタデータ) (2020-12-15T20:41:24Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - Multi-Domain Image Completion for Random Missing Input Data [17.53581223279953]
マルチドメインデータは、異なるモダリティからの相補的な情報を利用する視覚アプリケーションで広く活用されている。
データ破損と異なるイメージングプロトコルにより、各領域のイメージの可用性は複数のデータソースによって異なる可能性がある。
実アプリケーションでランダムに欠落したドメイン(s)データを補完する一般的な手法を提案する。
論文 参考訳(メタデータ) (2020-07-10T16:38:48Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。