Distributed Learning of Generalized Linear Causal Networks
- URL: http://arxiv.org/abs/2201.09194v1
- Date: Sun, 23 Jan 2022 06:33:25 GMT
- Title: Distributed Learning of Generalized Linear Causal Networks
- Authors: Qiaoling Ye, Arash A. Amini and Qing Zhou
- Abstract summary: We propose a novel structure learning method called distributed annealing on regularized likelihood score (DARLS)
DARLS is the first method for learning causal graphs with such theoretical guarantees.
In a real-world application for modeling protein-DNA binding networks with distributed ChIP-Sequencing data, DARLS exhibits higher predictive power than other methods.
- Score: 19.381934612280993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of learning causal structures from data stored on
multiple machines, and propose a novel structure learning method called
distributed annealing on regularized likelihood score (DARLS) to solve this
problem. We model causal structures by a directed acyclic graph that is
parameterized with generalized linear models, so that our method is applicable
to various types of data. To obtain a high-scoring causal graph, DARLS
simulates an annealing process to search over the space of topological sorts,
where the optimal graphical structure compatible with a sort is found by a
distributed optimization method. This distributed optimization relies on
multiple rounds of communication between local and central machines to estimate
the optimal structure. We establish its convergence to a global optimizer of
the overall score that is computed on all data across local machines. To the
best of our knowledge, DARLS is the first distributed method for learning
causal graphs with such theoretical guarantees. Through extensive simulation
studies, DARLS has shown competing performance against existing methods on
distributed data, and achieved comparable structure learning accuracy and
test-data likelihood with competing methods applied to pooled data across all
local machines. In a real-world application for modeling protein-DNA binding
networks with distributed ChIP-Sequencing data, DARLS also exhibits higher
predictive power than other methods, demonstrating a great advantage in
estimating causal networks from distributed data.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
We show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods.
We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets.
arXiv Detail & Related papers (2022-03-17T20:47:42Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
We propose a radically different approach in that no data is required for training the neural networks that produce the solution.
In particular, we reduce the optimization problem to a neural network and employ a dataless training scheme to refine the parameters of the network such that those parameters yield the structure of interest.
arXiv Detail & Related papers (2022-03-15T19:21:31Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Linear Regression with Distributed Learning: A Generalization Error
Perspective [0.0]
We investigate the performance of distributed learning for large-scale linear regression.
We focus on the generalization error, i.e., the performance on unseen data.
Our results show that the generalization error of the distributed solution can be substantially higher than that of the centralized solution.
arXiv Detail & Related papers (2021-01-22T08:43:28Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
hierarchy follows from approximation spaces identified at successively finer scales.
For promoting model generalization at each scale, we also introduce a novel, projection based penalty operator across multiple dimension.
Results show the performance of the approach as a data reduction and modeling strategy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-06-09T18:32:24Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.