Online Soft Conformance Checking: Any Perspective Can Indicate
Deviations
- URL: http://arxiv.org/abs/2201.09222v1
- Date: Sun, 23 Jan 2022 10:26:44 GMT
- Title: Online Soft Conformance Checking: Any Perspective Can Indicate
Deviations
- Authors: Andrea Burattin
- Abstract summary: Conformance checking is used to establish the extent to which executions of a process conform to the expected behavior of a reference model.
This paper suggests a conformance approach that uses a descriptive model which is not necessarily referring to the control-flow.
The entire approach can work both offline and online, thus providing feedback in real time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Within process mining, a relevant activity is conformance checking. Such
activity consists of establishing the extent to which actual executions of a
process conform the expected behavior of a reference model. Current techniques
focus on prescriptive models of the control-flow as references. In certain
scenarios, however, a prescriptive model might not be available and,
additionally, the control-flow perspective might not be ideal for this purpose.
This paper tackles these two problems by suggesting a conformance approach that
uses a descriptive model (i.e., a pattern of the observed behavior over a
certain amount of time) which is not necessarily referring to the control-flow
(e.g., it can be based on the social network of handover of work).
Additionally, the entire approach can work both offline and online, thus
providing feedback in real time. The approach, which is implemented in ProM,
has been tested and results from 3 experiments with real world as well as
synthetic data are reported.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Mining Constraints from Reference Process Models for Detecting Best-Practice Violations in Event Log [1.389948527681755]
We propose a framework for mining declarative best-practice constraints from a reference model collection.
We demonstrate the capability of our framework to detect best-practice violations through an evaluation based on real-world process model collections and event logs.
arXiv Detail & Related papers (2024-07-02T15:05:37Z) - Object-Centric Conformance Alignments with Synchronization (Extended Version) [57.76661079749309]
We present a new formalism that combines the ability of object-centric Petri nets to capture one-to-many relations and the one of Petri nets with identifiers to compare and synchronize objects based on their identity.
We propose a conformance checking approach for such nets based on an encoding in satisfiability modulo theories (SMT)
arXiv Detail & Related papers (2023-12-13T21:53:32Z) - Code Models are Zero-shot Precondition Reasoners [83.8561159080672]
We use code representations to reason about action preconditions for sequential decision making tasks.
We propose a precondition-aware action sampling strategy that ensures actions predicted by a policy are consistent with preconditions.
arXiv Detail & Related papers (2023-11-16T06:19:27Z) - Alignment-based conformance checking over probabilistic events [4.060731229044571]
We introduce a weighted trace model and weighted alignment cost function, and a custom threshold parameter that controls the level of confidence on the event data.
The resulting algorithm considers activities of lower but sufficiently high probability that better align with the process model.
arXiv Detail & Related papers (2022-09-09T14:07:37Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
We introduce the general framework of relational action bases (RABs)
RABs generalize existing models by lifting both restrictions.
We demonstrate the effectiveness of this approach on a benchmark of data-aware business processes.
arXiv Detail & Related papers (2022-08-12T17:03:50Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
The paper studies existing methods in this field via a Systematic Literature Review ( SLR)
The SLR provides insights into challenges and areas for future research that could enhance the usefulness and applicability of prescriptive process monitoring methods.
arXiv Detail & Related papers (2021-12-03T08:06:24Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z) - Predictive Process Model Monitoring using Recurrent Neural Networks [2.4029798593292706]
This paper introduces Processes-As-Movies (PAM), a technique that provides a middle ground between predictive monitoring.
It does so by capturing declarative process constraints between activities in various windows of a process execution trace.
Various recurrent neural network topologies tailored to high-dimensional input are used to model the process model evolution with windows as time steps.
arXiv Detail & Related papers (2020-11-05T13:57:33Z) - Modeling Online Behavior in Recommender Systems: The Importance of
Temporal Context [30.894950420437926]
We show how omitting temporal context when evaluating recommender system performance leads to false confidence.
We propose a training procedure to further embed the temporal context in existing models.
Results show that including our temporal objective can improve recall@20 by up to 20%.
arXiv Detail & Related papers (2020-09-19T19:36:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.