An integrated recurrent neural network and regression model with spatial
and climatic couplings for vector-borne disease dynamics
- URL: http://arxiv.org/abs/2201.09394v1
- Date: Sun, 23 Jan 2022 23:04:58 GMT
- Title: An integrated recurrent neural network and regression model with spatial
and climatic couplings for vector-borne disease dynamics
- Authors: Zhijian Li, Jack Xin, Guofa Zhou
- Abstract summary: We develop an integrated recurrent neural network and nonlinear regression model for disease-borne disease evolution.
We take into account climate data seasonality and as external factors that correlate with insects (e.g. flies), also spill-over infections from neighboring regions surrounding a region of interest.
The integrated model is trained by neuraltemporal descent and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection outbreaks occurred.
- Score: 4.254099382808598
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed an integrated recurrent neural network and nonlinear regression
spatio-temporal model for vector-borne disease evolution. We take into account
climate data and seasonality as external factors that correlate with disease
transmitting insects (e.g. flies), also spill-over infections from neighboring
regions surrounding a region of interest. The climate data is encoded to the
model through a quadratic embedding scheme motivated by recommendation systems.
The neighboring regions' influence is modeled by a long short-term memory
neural network. The integrated model is trained by stochastic gradient descent
and tested on leish-maniasis data in Sri Lanka from 2013-2018 where infection
outbreaks occurred. Our model outperformed ARIMA models across a number of
regions with high infections, and an associated ablation study renders support
to our modeling hypothesis and ideas.
Related papers
- Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Modeling the geospatial evolution of COVID-19 using spatio-temporal
convolutional sequence-to-sequence neural networks [48.7576911714538]
Portugal was the country in the world with the largest incidence rate, with 14-days incidence rates per 100,000 inhabitants in excess of 1000.
Despite its importance, accurate prediction of the geospatial evolution of COVID-19 remains a challenge.
arXiv Detail & Related papers (2021-05-06T15:24:00Z) - Aedes-AI: Neural Network Models of Mosquito Abundance [0.0]
We develop a feed-forward neural network, a short-term memory gated neural network, and a recurrent unit.
We evaluate the networks in their ability to replicate recurrent features of mosquito populations by a mechanistic model.
We conclude with an outlook on how such equation-free models may facilitate vector control or estimation of disease risk at arbitrary spatial scales.
arXiv Detail & Related papers (2021-04-21T21:28:03Z) - Digital twins based on bidirectional LSTM and GAN for modelling COVID-19 [8.406968279478347]
coronavirus 2019 has spread throughout the globe infecting over 100 million people and causing the death of over 2.2 million people.
There is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
Recent advances in machine learning techniques have given rise to neural networks with the ability to learn and predict complex dynamics at reduced computational costs.
arXiv Detail & Related papers (2021-02-03T11:54:24Z) - Deep learning via LSTM models for COVID-19 infection forecasting in
India [13.163271874039191]
Prominent computational and mathematical models have been unreliable due to the complexity of the spread of infections.
Deep learning models such as recurrent neural networks are well suited for modelling temporal sequences.
We select states with COVID-19 hotpots in terms of the rate of infections and compare with states where infections have been contained or reached their peak.
Our results show that long-term forecasts are promising which motivates the application of the method in other countries or areas.
arXiv Detail & Related papers (2021-01-28T09:19:10Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
We present a novel combination of epidemiological modeling with specialized neural networks.
We are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
arXiv Detail & Related papers (2020-10-01T11:01:49Z) - A Recurrent Neural Network and Differential Equation Based
Spatiotemporal Infectious Disease Model with Application to COVID-19 [3.464871689508835]
We develop an integrated disease model based on epidemic differential equations (SIR) and recurrent neural networks (RNN)
We trained and tested our model on CO-19 data in Italy, and show that it out-performs existing temporal models (fully connected NN, SIR, ARIMA) in 1-day, 3-day, and 1-week ahead forecasting.
arXiv Detail & Related papers (2020-07-14T07:04:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.