論文の概要: Probability Distribution on Rooted Trees
- arxiv url: http://arxiv.org/abs/2201.09460v1
- Date: Mon, 24 Jan 2022 05:13:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 14:35:32.399157
- Title: Probability Distribution on Rooted Trees
- Title(参考訳): 根付き樹木の確率分布
- Authors: Yuta Nakahara, Shota Saito, Akira Kamatsuka, Toshiyasu Matsushima
- Abstract要約: 根付き木の階層的表現能力は、データ圧縮、画像処理、機械学習など、さまざまな領域の統計モデルを表現するために応用される。
これを解決するための統一的なアプローチはベイズ的アプローチであり、ルート木をランダム変数とみなし、選択されたモデルや新しいデータポイントの予測値に対して直接損失関数を仮定することができる。
本稿では,最大子ノード数と最大深さのみを固定したルート木に対して,一般化された確率分布を提案する。
- 参考スコア(独自算出の注目度): 1.3955252961896318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The hierarchical and recursive expressive capability of rooted trees is
applicable to represent statistical models in various areas, such as data
compression, image processing, and machine learning. On the other hand, such
hierarchical expressive capability causes a problem in tree selection to avoid
overfitting. One unified approach to solve this is a Bayesian approach, on
which the rooted tree is regarded as a random variable and a direct loss
function can be assumed on the selected model or the predicted value for a new
data point. However, all the previous studies on this approach are based on the
probability distribution on full trees, to the best of our knowledge. In this
paper, we propose a generalized probability distribution for any rooted trees
in which only the maximum number of child nodes and the maximum depth are
fixed. Furthermore, we derive recursive methods to evaluate the characteristics
of the probability distribution without any approximations.
- Abstract(参考訳): 根付き木の階層的かつ再帰的な表現能力は、データ圧縮、画像処理、機械学習といった様々な分野の統計モデルを表現するのに応用できる。
一方、そのような階層的表現能力は、過剰な適合を避けるために木の選択に問題を引き起こす。
これを解決するための統一的なアプローチはベイズ的アプローチであり、ルート木をランダム変数とみなし、選択されたモデルや新しいデータポイントの予測値に対して直接損失関数を仮定することができる。
しかしながら、このアプローチに関するこれまでのすべての研究は、我々の知識を最大限に活用するために、満木上の確率分布に基づいている。
本稿では,最大子ノード数と最大深さのみを固定したルート木に対して,一般化された確率分布を提案する。
さらに,近似を伴わずに確率分布の特性を評価する再帰的手法を導出する。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - Ensembles of Probabilistic Regression Trees [46.53457774230618]
木に基づくアンサンブル法は多くの応用や研究で回帰問題に成功している。
本研究では,確率分布に関する各領域の観察を割り当てることで,目的関数のスムーズな近似を提供する確率回帰木のアンサンブルバージョンについて検討する。
論文 参考訳(メタデータ) (2024-06-20T06:51:51Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
細かな視覚分類のための新しいアプローチであるViTreeを紹介する。
ツリーパスをトラバースすることで、ViTreeは変換処理された機能からパッチを効果的に選択し、情報のあるローカルリージョンをハイライトする。
このパッチとパスの選択性は、ViTreeのモデルの解釈可能性を高め、モデルの内部動作に関するより良い洞察を可能にする。
論文 参考訳(メタデータ) (2024-01-30T14:32:25Z) - Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality
Based on Decision Trees as Data Observation Processes [1.2774526936067927]
本稿では,データの背後にあるデータ観測過程を表現するために木を用いる。
我々は、過度な適合に対して頑健な統計的に最適な予測を導出する。
これをマルコフ連鎖モンテカルロ法により解き、ステップサイズは木の後方分布に応じて適応的に調整される。
論文 参考訳(メタデータ) (2023-06-12T12:14:57Z) - Bayesian Decision Trees via Tractable Priors and Probabilistic
Context-Free Grammars [7.259767735431625]
ベイズ決定木を学習するための新しい基準を提案する。
BCART-PCFGは、データから得られる木々間の後部分布から決定木を効率的にサンプリングすることができる。
BCART-PCFGで採取した木は、優雅に構築された決定木に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-02-15T00:17:41Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - A cautionary tale on fitting decision trees to data from additive
models: generalization lower bounds [9.546094657606178]
本研究では,異なる回帰モデルに対する決定木の一般化性能について検討する。
これにより、アルゴリズムが新しいデータに一般化するために(あるいは作らない)仮定する帰納的バイアスが引き起こされる。
スパース加法モデルに適合する大規模な決定木アルゴリズムに対して、シャープな2乗誤差一般化を低い境界で証明する。
論文 参考訳(メタデータ) (2021-10-18T21:22:40Z) - Probability Distribution on Full Rooted Trees [2.1506382989223782]
データ圧縮、画像処理、機械学習では、完全なルートツリーはランダム変数ではない。
これを解決する方法の1つは、全根木上の事前分布を仮定することである。
本稿では,全根樹群における確率分布を提案する。
論文 参考訳(メタデータ) (2021-09-27T06:51:35Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Convex Polytope Trees [57.56078843831244]
コンベックスポリトープ木(CPT)は、決定境界の解釈可能な一般化によって決定木の系統を拡張するために提案される。
木構造が与えられたとき,木パラメータに対するCPTおよび拡張性のあるエンドツーエンドトレーニングアルゴリズムを効率的に構築する。
論文 参考訳(メタデータ) (2020-10-21T19:38:57Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。