論文の概要: AutoSeg -- Steering the Inductive Biases for Automatic Pathology
Segmentation
- arxiv url: http://arxiv.org/abs/2201.09579v1
- Date: Mon, 24 Jan 2022 10:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 17:18:08.149538
- Title: AutoSeg -- Steering the Inductive Biases for Automatic Pathology
Segmentation
- Title(参考訳): autoseg -- 自動病理セグメンテーションのための誘導バイアスを操る
- Authors: Felix Meissen and Georgios Kaissis and Daniel Rueckert
- Abstract要約: AutoSegは、現実世界の病態に類似した多様な人工的な異常を生成する。
本研究では,2021年の医学的アウト・オブ・ディストリビューション・アナリティクス・チャレンジにおいて,本手法を実験的に評価した。
- 参考スコア(独自算出の注目度): 7.49320945341034
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In medical imaging, un-, semi-, or self-supervised pathology detection is
often approached with anomaly- or out-of-distribution detection methods, whose
inductive biases are not intentionally directed towards detecting pathologies,
and are therefore sub-optimal for this task. To tackle this problem, we propose
AutoSeg, an engine that can generate diverse artificial anomalies that resemble
the properties of real-world pathologies. Our method can accurately segment
unseen artificial anomalies and outperforms existing methods for pathology
detection on a challenging real-world dataset of Chest X-ray images. We
experimentally evaluate our method on the Medical Out-of-Distribution Analysis
Challenge 2021.
- Abstract(参考訳): 医用画像では、非、半、または自己監督型病理検出は、誘導バイアスが故意に病理検出に向けられておらず、したがってこの課題に準最適である、異常または分布外検出法によってしばしばアプローチされる。
この問題に対処するために,実世界の病理の性質に類似した多種多様な人工異常を発生できるエンジンであるautosegを提案する。
提案手法は,チェストX線画像の現実的データセットにおいて,未知の人工異常を正確に分類し,既存の病理診断法より優れている。
本研究は,2021年医学的アウト・オブ・ディストリビューション・アナリティクス・チャレンジの手法を実験的に評価する。
関連論文リスト
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-21T15:41:34Z) - Towards Universal Unsupervised Anomaly Detection in Medical Imaging [13.161402789616004]
現実的な擬似健康再構築を実現するために,新しい教師なし異常検出手法であるtextitReversed Auto-Encoders (RA) を提案する。
提案手法は, 脳のMRI, 小児手首X線, 胸部X線など, 様々な画像モダリティにまたがって評価される。
医用画像の診断精度は, より広い範囲の未知の病態を同定することによって向上する可能性がある。
論文 参考訳(メタデータ) (2024-01-19T11:35:07Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Achieving state-of-the-art performance in the Medical
Out-of-Distribution (MOOD) challenge using plausible synthetic anomalies [0.5677301320664404]
非教師付き異常検出(out-of-distribution detection)は、異常なサンプルを特定することを目的としている。
本手法は,局所的な合成異常を識別するためのセグメンテーションネットワークを訓練する自己教師型戦略に基づいている。
我々の貢献により, 合成異常発生プロセスが改善し, 合成異常がより均一になる。
論文 参考訳(メタデータ) (2023-08-02T20:16:13Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - Image Synthesis as a Pretext for Unsupervised Histopathological
Diagnosis [3.7692411550925673]
視覚データの異常検出は、正常な症例と異常な外観を区別する問題を指す。
近年のディープジェネレーティブモデルの発展は、監視されていない異常検出への適用への関心を喚起している。
論文 参考訳(メタデータ) (2021-04-28T14:37:23Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
論文 参考訳(メタデータ) (2020-06-19T20:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。