論文の概要: Towards a Real-time Measure of the Perception of Anthropomorphism in
Human-robot Interaction
- arxiv url: http://arxiv.org/abs/2201.09595v1
- Date: Mon, 24 Jan 2022 11:10:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-26 00:37:21.845053
- Title: Towards a Real-time Measure of the Perception of Anthropomorphism in
Human-robot Interaction
- Title(参考訳): 人間とロボットの相互作用における擬人化知覚のリアルタイム計測に向けて
- Authors: Maria Tsfasman, Avinash Saravanan, Dekel Viner, Daan Goslinga, Sarah
de Wolf, Chirag Raman, Catholijn M. Jonker, Catharine Oertel
- Abstract要約: 我々は,オンラインの人間とロボットのインタラクション実験を,教育現場で実施した。
この研究には43人の英語話者が参加した。
その結果,擬人化の主観的・客観的知覚の程度は,音響・韻律的エントレメントと正の相関が認められた。
- 参考スコア(独自算出の注目度): 5.112850258732114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How human-like do conversational robots need to look to enable long-term
human-robot conversation? One essential aspect of long-term interaction is a
human's ability to adapt to the varying degrees of a conversational partner's
engagement and emotions. Prosodically, this can be achieved through
(dis)entrainment. While speech-synthesis has been a limiting factor for many
years, restrictions in this regard are increasingly mitigated. These
advancements now emphasise the importance of studying the effect of robot
embodiment on human entrainment. In this study, we conducted a between-subjects
online human-robot interaction experiment in an educational use-case scenario
where a tutor was either embodied through a human or a robot face. 43
English-speaking participants took part in the study for whom we analysed the
degree of acoustic-prosodic entrainment to the human or robot face,
respectively. We found that the degree of subjective and objective perception
of anthropomorphism positively correlates with acoustic-prosodic entrainment.
- Abstract(参考訳): 人間のような会話ロボットは、長期的な人間とロボットの会話を可能にする必要があるのか?
長期的な相互作用の重要な側面の1つは、会話相手のエンゲージメントと感情の様々な程度に適応できる人間の能力である。
確率的に、これは(分散)訓練によって達成できる。
音声合成は長年にわたって制限要因であったが、この点での制限はますます緩和されている。
これらの進歩は、ロボットエンボディメントが人間のエントレーメントに与える影響を研究することの重要性を強調している。
本研究では,教師が人間やロボットの顔を通して体現される教育的シナリオにおいて,人-ロボット間のインタラクション実験を行った。
43人の英語を話す被験者が,人やロボットの顔に対する音響・韻律的運動の程度を分析した。
擬人化の主観的・客観的知覚の程度は音響-韻律的エントレインメントと正の相関を示した。
関連論文リスト
- SIFToM: Robust Spoken Instruction Following through Theory of Mind [51.326266354164716]
本稿では,認知にインスパイアされた音声指導モデルであるSIFToMを提案し,多様な音声条件下でロボットが人間の指示を実践的に追従できるようにする。
結果から,SIFToMモデルは現状の音声モデルや言語モデルよりも優れており,課題に追従する音声命令に対する人間レベルの精度に近づいていることがわかった。
論文 参考訳(メタデータ) (2024-09-17T02:36:10Z) - Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
本研究では,感情言語コミュニケーションが人間ロボットの文脈における相互学習にどのように影響するかを検証する。
児童介護のダイナミックスからインスピレーションを得て、私たちの人間とロボットのインタラクションのセットアップは、内部的、ホメオスタティックに制御されたニーズのコミュニケーション方法を学ぶための(シミュレートされた)ロボットで構成されています。
論文 参考訳(メタデータ) (2024-07-01T13:35:08Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - A Human-Robot Mutual Learning System with Affect-Grounded Language
Acquisition and Differential Outcomes Training [0.1812164955222814]
本稿では,ロボットのホメオスタティックなニーズを識別するための,人間とロボットのインタラクション・セットアップを提案する。
我々は,ロボットが内部ニーズに特有のフィードバックを提供する,差分結果学習プロトコルを採用した。
我々は、DOTが人間の学習効率を高めることができるという証拠を発見し、それによってより効率的なロボット言語習得を可能にした。
論文 参考訳(メタデータ) (2023-10-20T09:41:31Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0は、家庭環境における協調ロボットタスクを研究するためのシミュレーションプラットフォームである。
複雑な変形可能な体と外観と運動の多様性をモデル化する際の課題に対処する。
Human-in-the-loopインフラストラクチャは、マウス/キーボードまたはVRインターフェースを介してシミュレーションされたロボットとの実際のヒューマンインタラクションを可能にする。
論文 参考訳(メタデータ) (2023-10-19T17:29:17Z) - HandMeThat: Human-Robot Communication in Physical and Social
Environments [73.91355172754717]
HandMeThatは、物理的および社会的環境における命令理解とフォローの総合評価のためのベンチマークである。
HandMeThatには、人間とロボットの対話の1万エピソードが含まれている。
オフラインとオンラインの強化学習アルゴリズムはHandMeThatでは性能が良くないことを示す。
論文 参考訳(メタデータ) (2023-10-05T16:14:46Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - Let's be friends! A rapport-building 3D embodied conversational agent
for the Human Support Robot [0.0]
会話中の非言語行動の微妙なミラーリング(模倣または平行共感とも呼ばれる)はラプポート構築に不可欠である。
本研究の課題は,対話者の表情と頭部の動きを反映できるECAとヒューマンサービスロボットを組み合わせることで,ユーザエクスペリエンスが向上するかどうかである。
私たちの貢献は、対話者の顔を追跡し、人間の支援ロボットと統合されたリアルタイムで顔の表情や頭の動きを反映することができる表現的ECAの複雑な統合です。
論文 参考訳(メタデータ) (2021-03-08T01:02:41Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z) - Human Perception of Intrinsically Motivated Autonomy in Human-Robot
Interaction [2.485182034310304]
人間に生息する環境でロボットを使用する場合の課題は、人間同士の相互作用によって引き起こされる摂動に対して、魅力的だが堅牢な振る舞いを設計することである。
我々のアイデアは、ロボットに本質的なモチベーション(IM)を持たせることで、新しい状況に対処し、人間以外の真の社会的存在として現れるようにすることです。
本稿では、自律的に生成された振る舞いを相互に比較できる「ロボット学者」による研究設計について述べる。
論文 参考訳(メタデータ) (2020-02-14T09:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。