論文の概要: End-to-end Person Search Sequentially Trained on Aggregated Dataset
- arxiv url: http://arxiv.org/abs/2201.09604v1
- Date: Mon, 24 Jan 2022 11:22:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-25 16:19:32.703464
- Title: End-to-end Person Search Sequentially Trained on Aggregated Dataset
- Title(参考訳): 集約データセットを用いた逐次学習によるエンドツーエンド人物検索
- Authors: Angelique Loesch and Jaonary Rabarisoa and Romaric Audigier
- Abstract要約: 本稿では,検出と特徴抽出を共同で計算するエンド・ツー・エンドのモデルを提案する。
コストのかかるIDアノテーションを使わずに、より多くの歩行者検出データセットを集約することで、共有機能マップがより汎用的であることを示す。
- 参考スコア(独自算出の注目度): 1.9766522384767227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In video surveillance applications, person search is a challenging task
consisting in detecting people and extracting features from their silhouette
for re-identification (re-ID) purpose. We propose a new end-to-end model that
jointly computes detection and feature extraction steps through a single deep
Convolutional Neural Network architecture. Sharing feature maps between the two
tasks for jointly describing people commonalities and specificities allows
faster runtime, which is valuable in real-world applications. In addition to
reaching state-of-the-art accuracy, this multi-task model can be sequentially
trained task-by-task, which results in a broader acceptance of input dataset
types. Indeed, we show that aggregating more pedestrian detection datasets
without costly identity annotations makes the shared feature maps more generic,
and improves re-ID precision. Moreover, these boosted shared feature maps
result in re-ID features more robust to a cross-dataset scenario.
- Abstract(参考訳): ビデオ監視アプリケーションでは、人物探索は、人物を検出し、シルエットから特徴を抽出し、再識別(re-ID)を目的としている。
本稿では,単一深層畳み込みニューラルネットワークアーキテクチャによる検出と特徴抽出を共同で計算するエンド・ツー・エンドモデルを提案する。
共通性と特異性を共同で記述する2つのタスク間で機能マップを共有することで、より高速な実行が可能になる。
最先端の精度を達成することに加えて、このマルチタスクモデルはシーケンシャルにタスク単位でトレーニングできるため、入力データセットタイプが広く受け入れられる。
実際、コストのかかるIDアノテーションを使わずに、より多くの歩行者検出データセットを集約することで、共有機能マップがより汎用的になり、re-ID精度が向上することを示す。
さらに、これらの共有機能マップの強化は、データセット間のシナリオに対してより堅牢なre-ID機能をもたらす。
関連論文リスト
- Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - A Dynamic Feature Interaction Framework for Multi-task Visual Perception [100.98434079696268]
複数の共通認識課題を解決するための効率的な統合フレームワークを考案する。
これらのタスクには、インスタンスセグメンテーション、セマンティックセグメンテーション、モノクル3D検出、深さ推定が含まれる。
提案するフレームワークはD2BNetと呼ばれ,マルチタスク認識のためのパラメータ効率予測に一意なアプローチを示す。
論文 参考訳(メタデータ) (2023-06-08T09:24:46Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - Correlation-Aware Deep Tracking [83.51092789908677]
本稿では,自己/横断的意図に着想を得た,新たなターゲット依存型特徴ネットワークを提案する。
我々のネットワークは機能ネットワークの複数の層にクロスイメージの特徴相関を深く埋め込んでいる。
我々のモデルは、豊富な未ペア画像に対して柔軟に事前訓練が可能であり、既存の手法よりも顕著に高速な収束をもたらす。
論文 参考訳(メタデータ) (2022-03-03T11:53:54Z) - Sequential End-to-end Network for Efficient Person Search [7.3658840620058115]
人物検出と人物再識別(re-ID)を共同で解決することを目的とした人物探索
既存の研究は、Faster R-CNNに基づくエンドツーエンドネットワークを設計している。
優れた特徴を抽出するためのシーケンシャルエンドツーエンドネットワーク(SeqNet)を提案する。
論文 参考訳(メタデータ) (2021-03-18T10:28:24Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
歩行者検出と識別サブタスクを1つのネットワークで処理するワンステップ方式を開発しました。
現在のワンステップアプローチには2つの大きな課題があります。
本稿では,これらの問題を解決するために,分離メモリ強化ネットワーク(DMRNet)を提案する。
論文 参考訳(メタデータ) (2021-02-22T06:19:45Z) - Multi-object Tracking with a Hierarchical Single-branch Network [31.680667324595557]
階層的な単一ブランチネットワークに基づくオンライン多目的追跡フレームワークを提案する。
新たなiHOIM損失関数は,2つのサブタスクの目的を統一し,より優れた検出性能を実現する。
MOT16とMOT20データセットの実験結果から,最先端のトラッキング性能が達成できた。
論文 参考訳(メタデータ) (2021-01-06T12:14:58Z) - A Tree-structure Convolutional Neural Network for Temporal Features
Exaction on Sensor-based Multi-resident Activity Recognition [4.619245607612873]
マルチレジデント活動認識(TSC-MRAR)のためのエンドツーエンド木構造畳み込みニューラルネットワークフレームワークを提案する。
まず、各サンプルをイベントとして扱い、スライディングウインドウに過去のセンサの読み取りを埋め込んだ現在のイベントを得る。
そして、時間的特徴を自動的に生成するために、木構造ネットワークを設計し、近くの読み物の時間的依存を導出する。
論文 参考訳(メタデータ) (2020-11-05T14:31:00Z) - Deep Learning based Person Re-identification [2.9631016562930546]
カラーヒストグラムに基づく比較を最初に用いて,ギャラリーセットに最も近いマッチングを求める,効率的な階層的再同定手法を提案する。
シルエット部分に基づく特徴抽出スキームは、各階層に採用され、異なる身体構造の相対的な位置を保存する。
その結果、全体的な精度において、最先端のアプローチよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2020-05-07T07:30:28Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要な問題である。
本稿では,FairMOTと呼ばれる,アンカーフリーなオブジェクト検出アーキテクチャCenterNetをベースとした,シンプルかつ効果的なアプローチを提案する。
このアプローチは、検出と追跡の両方において高い精度を達成する。
論文 参考訳(メタデータ) (2020-04-04T08:18:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。