Relational Memory Augmented Language Models
- URL: http://arxiv.org/abs/2201.09680v1
- Date: Mon, 24 Jan 2022 13:25:41 GMT
- Title: Relational Memory Augmented Language Models
- Authors: Qi Liu, Dani Yogatama, Phil Blunsom
- Abstract summary: We present a memory-augmented approach to condition an autoregressive language model on a knowledge graph.
Our approach produces a better language model in terms of perplexity and bits per character.
- Score: 40.626389607433936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a memory-augmented approach to condition an autoregressive
language model on a knowledge graph. We represent the graph as a collection of
relation triples and retrieve relevant relations for a given context to improve
text generation. Experiments on WikiText-103, WMT19, and enwik8 English
datasets demonstrate that our approach produces a better language model in
terms of perplexity and bits per character. We also show that relational memory
improves coherence, is complementary to token-based memory, and enables causal
interventions. Our model provides a simple yet effective way to combine an
autoregressive language model with a knowledge graph for a more coherent and
logical generation.
Related papers
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - Generative Subgraph Retrieval for Knowledge Graph-Grounded Dialog Generation [17.437568540883106]
We propose Dialog generation with Generative Subgraph Retrieval (DialogGSR)
DialogGSR retrieves relevant knowledge subgraphs by directly generating their token sequences on top of language models.
It achieves state-of-the-art performance in knowledge graph-grounded dialog generation, as demonstrated on OpenDialKG and KOMODIS datasets.
arXiv Detail & Related papers (2024-10-12T03:33:42Z) - Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - Semi-automatic Data Enhancement for Document-Level Relation Extraction
with Distant Supervision from Large Language Models [26.523153535336725]
Document-level Relation Extraction (DocRE) aims to extract relations from a long context.
We propose a method integrating a large language model (LLM) and a natural language inference (NLI) module to generate relation triples.
We demonstrate the effectiveness of our approach by introducing an enhanced dataset known as DocGNRE.
arXiv Detail & Related papers (2023-11-13T13:10:44Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
We introduce a new entity/relation embedding layer that learns to differentiate distinctive entity and relation types.
We show that further pre-training the language models with this additional embedding layer using the triples extracted from the knowledge graph, followed by the standard fine-tuning phase sets a new state-of-the-art performance for the link prediction task on the benchmark datasets.
arXiv Detail & Related papers (2022-11-04T20:38:12Z) - Imposing Relation Structure in Language-Model Embeddings Using
Contrastive Learning [30.00047118880045]
We propose a novel contrastive learning framework that trains sentence embeddings to encode the relations in a graph structure.
The resulting relation-aware sentence embeddings achieve state-of-the-art results on the relation extraction task.
arXiv Detail & Related papers (2021-09-02T10:58:27Z) - Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent
Semantic Parsing [52.24507547010127]
Cross-domain context-dependent semantic parsing is a new focus of research.
We present a dynamic graph framework that effectively modelling contextual utterances, tokens, database schemas, and their complicated interaction as the conversation proceeds.
The proposed framework outperforms all existing models by large margins, achieving new state-of-the-art performance on two large-scale benchmarks.
arXiv Detail & Related papers (2021-01-05T18:11:29Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
We develop a neural abstractive multi-document summarization (MDS) model which can leverage well-known graph representations of documents.
Our model utilizes graphs to encode documents in order to capture cross-document relations, which is crucial to summarizing long documents.
Our model can also take advantage of graphs to guide the summary generation process, which is beneficial for generating coherent and concise summaries.
arXiv Detail & Related papers (2020-05-20T13:39:47Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.