Relation-Aware Graph Foundation Model
- URL: http://arxiv.org/abs/2505.12027v1
- Date: Sat, 17 May 2025 14:34:41 GMT
- Title: Relation-Aware Graph Foundation Model
- Authors: Jianxiang Yu, Jiapeng Zhu, Hao Qian, Ziqi Liu, Zhiqiang Zhang, Xiang Li,
- Abstract summary: A graph foundation model (GFMs) has emerged as a promising direction in graph learning.<n>Unlike language models that rely on explicit token representations, graphs lack a well-defined unit for generalization.<n>We propose REEF, a novel framework that leverages relation tokens as the basic units for GFMs.
- Score: 21.86954503656643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, large language models (LLMs) have demonstrated remarkable generalization capabilities across various natural language processing (NLP) tasks. Similarly, graph foundation models (GFMs) have emerged as a promising direction in graph learning, aiming to generalize across diverse datasets through large-scale pre-training. However, unlike language models that rely on explicit token representations, graphs lack a well-defined unit for generalization, making it challenging to design effective pre-training strategies. In this work, we propose REEF, a novel framework that leverages relation tokens as the basic units for GFMs. Inspired by the token vocabulary in LLMs, we construct a relation vocabulary of relation tokens to store relational information within graphs. To accommodate diverse relations, we introduce two hypernetworks that adaptively generate the parameters of aggregators and classifiers in graph neural networks based on relation tokens. In addition, we design another hypernetwork to construct dataset-specific projectors and incorporate a dataset-level feature bias into the initial node representations, enhancing flexibility across different datasets with the same relation. Further, we adopt graph data augmentation and a mixed-dataset pre-training strategy, allowing REEF to capture relational diversity more effectively and exhibit strong generalization capabilities. Extensive experiments show that REEF significantly outperforms existing methods on both pre-training and transfer learning tasks, underscoring its potential as a powerful foundation model for graph-based applications.
Related papers
- Quantizing Text-attributed Graphs for Semantic-Structural Integration [6.721504414917793]
Text-attributed graphs (TAGs) have emerged as a powerful representation for modeling complex relationships across diverse domains.<n>With the rise of large language models (LLMs), there is growing interest in leveraging their capabilities for graph learning.<n>We propose STAG, a novel self-supervised framework that directly quantizes graph structural information into discrete tokens using a frozen codebook.
arXiv Detail & Related papers (2025-07-20T09:18:02Z) - Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data.<n>We present a new blueprint that enables end-to-end representation of'relational entity graphs' without traditional engineering feature.<n>We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data.
arXiv Detail & Related papers (2025-06-19T23:51:38Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.<n>We propose task-trees as basic learning instances to align task spaces on graphs.<n>Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Graph Learning in the Era of LLMs: A Survey from the Perspective of Data, Models, and Tasks [25.720233631885726]
integration of Graph Neural Networks (GNNs) and Large Language Models (LLMs) has emerged as a promising technological paradigm.<n>We leverage graph description texts with rich semantic context to fundamentally enhance Data quality.<n>This work serves as a foundational reference for researchers and practitioners looking to advance graph learning methodologies.
arXiv Detail & Related papers (2024-12-17T01:41:17Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, such as Graph Neural Networks (GNNs) and Graph Transformers (GTs)<n>We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art (SOTA) GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAGs) can generalize to unseen graphs and tasks across diverse domains.<n>We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks.<n>We demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer.
arXiv Detail & Related papers (2024-02-21T09:06:31Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.