論文の概要: RamanNet: A generalized neural network architecture for Raman Spectrum
Analysis
- arxiv url: http://arxiv.org/abs/2201.09737v1
- Date: Thu, 20 Jan 2022 23:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-29 11:23:01.553362
- Title: RamanNet: A generalized neural network architecture for Raman Spectrum
Analysis
- Title(参考訳): RamanNet: Raman Spectrum Analysisのための汎用ニューラルネットワークアーキテクチャ
- Authors: Nabil Ibtehaz, Muhammad E. H. Chowdhury, Amith Khandakar, Susu M.
Zughaier, Serkan Kiranyaz, M. Sohel Rahman
- Abstract要約: ラマン分光法は分子の振動プロファイルを提供し、異なる種類の物質を識別するために用いられる。
近年のRaman Spectraデータ量の増加にもかかわらず、Raman Spectra分析のための一般化された機械学習手法の開発には大きな努力が払われていない。
既存の手法を検証、実験、評価し、現在の逐次モデルも従来の機械学習モデルも、Ramanスペクトルの分析に十分満足できないと推測する。
- 参考スコア(独自算出の注目度): 4.670045009583903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Raman spectroscopy provides a vibrational profile of the molecules and thus
can be used to uniquely identify different kind of materials. This sort of
fingerprinting molecules has thus led to widespread application of Raman
spectrum in various fields like medical dignostics, forensics, mineralogy,
bacteriology and virology etc. Despite the recent rise in Raman spectra data
volume, there has not been any significant effort in developing generalized
machine learning methods for Raman spectra analysis. We examine, experiment and
evaluate existing methods and conjecture that neither current sequential models
nor traditional machine learning models are satisfactorily sufficient to
analyze Raman spectra. Both has their perks and pitfalls, therefore we attempt
to mix the best of both worlds and propose a novel network architecture
RamanNet. RamanNet is immune to invariance property in CNN and at the same time
better than traditional machine learning models for the inclusion of sparse
connectivity. Our experiments on 4 public datasets demonstrate superior
performance over the much complex state-of-the-art methods and thus RamanNet
has the potential to become the defacto standard in Raman spectra data analysis
- Abstract(参考訳): ラマン分光法は分子の振動プロファイルを提供するため、異なる種類の物質を一意に識別することができる。
この種のフィンガープリント分子は、医学の発掘学、法医学、鉱物学、細菌学、ウイルス学など様々な分野でラマンスペクトルを広く応用した。
近年のラマンスペクトルデータ量の増加にもかかわらず、ラマンスペクトル解析のための一般化された機械学習手法の開発には大きな努力が払われていない。
従来の逐次モデルも従来の機械学習モデルも、ラマンスペクトルの解析に十分ではないことを検証し、実験し、評価する。
両者とも欠点と落とし穴があるため、私たちは両方の世界のベストを混ぜ合わせ、新しいネットワークアーキテクチャであるramannetを提案します。
RamanNetはCNNの不変性に免疫を持ち、同時にスパース接続を含む従来の機械学習モデルよりも優れている。
4つの公開データセットに関する実験は、非常に複雑な最先端手法よりも優れた性能を示しており、RamanNetはラマンスペクトルデータ解析におけるデファクト標準となる可能性を持っている。
関連論文リスト
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet)は、任意のグラフスペクトルフィルタを設計するためのシンプルで効果的なスキームを提供する理論的なサポートを持つ、新しいグラフニューラルネットワークである。
我々の知る限り、我々の研究はグラフGNNスペクトルフィルタの設計にSSMを使った最初のものである。
9つの公開ベンチマークでの大規模な実験により、GrassNetは現実世界のグラフモデリングタスクにおいて優れたパフォーマンスを達成することが明らかになった。
論文 参考訳(メタデータ) (2024-08-16T07:33:58Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
従来の知恵は、スペクトル畳み込みネットワークは無向グラフ上にしか展開できないと規定している。
ここでは、このグラフフーリエ変換への伝統的な依存が超フルであることを示す。
本稿では,新たに開発されたフィルタの周波数応答解釈を行い,フィルタ表現に使用するベースの影響を調査し,ネットワークを基盤とする特性演算子との相互作用について議論する。
論文 参考訳(メタデータ) (2023-10-03T17:42:09Z) - Mass Spectra Prediction with Structural Motif-based Graph Neural
Networks [21.71309513265843]
MoMS-Netは、構造モチーフから得られる情報とグラフニューラルネットワーク(GNN)の実装を用いて質量スペクトルを予測するシステムである。
我々は、様々な質量スペクトルでモデルを試験し、既存のモデルよりもその優位性を観察した。
論文 参考訳(メタデータ) (2023-06-28T10:33:57Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - An Information-Theoretic Framework for Supervised Learning [22.280001450122175]
後悔とサンプルの複雑さという独自の概念を持つ新しい情報理論フレームワークを提案する。
本稿では、ReLUアクティベーションユニットを用いたディープニューラルネットワークによって生成されたデータから学習する際のサンプルの複雑さについて検討する。
我々は、ランダムな単層ニューラルネットワークの実験的な解析により、理論結果を裏付けることで結論付ける。
論文 参考訳(メタデータ) (2022-03-01T05:58:28Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
本稿ではスペクトル分析に基づく教師なし深層表現学習のための新しいネットワーク構造を提案する。
パッチレベルで画像間の局所的な類似性を識別できるため、閉塞に対してより堅牢である。
クラスタリングに親しみやすい表現を学習し、データサンプル間の深い相関を明らかにすることができる。
論文 参考訳(メタデータ) (2020-09-11T05:07:15Z) - Cycle-StarNet: Bridging the gap between theory and data by leveraging
large datasets [0.0]
現在のスペクトル分析の自動化手法は、(a)データ駆動であり、恒星パラメータと元素の存在量の事前の知識を必要とするか、(b)理論と実践のギャップに影響を受けやすい理論合成モデルに基づくかのいずれかである。
本研究では、シミュレーションされた恒星スペクトルを、教師なし学習を大規模分光サーベイに適用することにより、現実的なスペクトルに変換するハイブリッドな生成領域適応法を提案する。
論文 参考訳(メタデータ) (2020-07-06T23:06:58Z) - A Review of 1D Convolutional Neural Networks toward Unknown Substance
Identification in Portable Raman Spectrometer [0.0]
ラマン分光法は、品質管理から最先端の生物医学研究まで、強力な分析ツールである。
これらは、未知の物質のフィールド分析のために、最初の応答者や法執行機関によって広く採用されている。
ラマン分光法による未知物質の検出と同定は、手元にある装置のスペクトルマッチング能力に大きく依存している。
論文 参考訳(メタデータ) (2020-06-18T14:28:00Z) - Persistent spectral based machine learning (PerSpect ML) for drug design [0.0]
薬物設計のための永続スペクトルベース機械学習(PerSpect ML)モデルを提案する。
我々は、11の永続スペクトル変数を考慮し、タンパク質-リガンド結合親和性予測における機械学習モデルの特徴として利用する。
これらのデータベースに対する私たちの結果は、知る限り、既存のすべてのモデルよりも優れています。
論文 参考訳(メタデータ) (2020-02-03T07:14:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。