Determining probability density functions with adiabatic quantum
computing
- URL: http://arxiv.org/abs/2303.11346v2
- Date: Fri, 23 Jun 2023 13:22:41 GMT
- Title: Determining probability density functions with adiabatic quantum
computing
- Authors: Matteo Robbiati, Juan M. Cruz-Martinez and Stefano Carrazza
- Abstract summary: A reliable determination of probability density functions from data samples is still a relevant topic in scientific applications.
We define a classical-to-quantum data embedding procedure which maps the empirical cumulative distribution function of the sample into time dependent Hamiltonian.
The obtained Hamiltonian is then projected into a quantum circuit using the time evolution operator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A reliable determination of probability density functions from data samples
is still a relevant topic in scientific applications. In this work we
investigate the possibility of defining an algorithm for density function
estimation using adiabatic quantum computing. Starting from a sample of a
one-dimensional distribution, we define a classical-to-quantum data embedding
procedure which maps the empirical cumulative distribution function of the
sample into time dependent Hamiltonian using adiabatic quantum evolution. The
obtained Hamiltonian is then projected into a quantum circuit using the time
evolution operator. Finally, the probability density function of the sample is
obtained using quantum hardware differentiation through the parameter shift
rule algorithm. We present successful numerical results for predefined known
distributions and high-energy physics Monte Carlo simulation samples.
Related papers
- Quantum Computing for Partition Function Estimation of a Markov Random Field in a Radar Anomaly Detection Problem [0.0]
In probability theory, the partition function is a factor used to reduce any probability function to a density function with total probability of one.
We propose a quantum algorithm for partition function estimation in the one clean qubit model.
arXiv Detail & Related papers (2025-01-02T09:14:14Z) - Variational approach to photonic quantum circuits via the parameter shift rule [0.0]
We derive a formulation of the parameter shift rule for reconfigurable optical linear circuits based on the Boson Sampling paradigm.
We also present similar rules for the computations of integrals over the variational parameters.
We employ the developed approach to experimentally test variational algorithms with single-photon states processed in a reconfigurable 6-mode universal integrated interferometer.
arXiv Detail & Related papers (2024-10-09T15:06:17Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs [1.0749601922718608]
Unitary and non-unitary diagonal operators are fundamental building blocks in quantum algorithms.
We introduce a general approach to implement unitary and non-unitary diagonal operators with efficient-adjustable-depth quantum circuits.
arXiv Detail & Related papers (2024-04-03T15:42:25Z) - Efficient quantum loading of probability distributions through Feynman
propagators [2.56711111236449]
We present quantum algorithms for the loading of probability distributions using Hamiltonian simulation for one dimensional Hamiltonians of the form $hat H= Delta + V(x) mathbbI$.
We consider the potentials $V(x)$ for which the Feynman propagator is known to have an analytically closed form and utilize these Hamiltonians to load probability distributions into quantum states.
arXiv Detail & Related papers (2023-11-22T21:41:58Z) - Quantum state preparation for bell-shaped probability distributions using deconvolution methods [0.0]
We present a hybrid classical-quantum approach to load quantum data.
We use the Jensen-Shannon distance as the cost function to quantify the closeness of the outcome from the classical step and the target distribution.
The output from the deconvolution step is used to construct the quantum circuit required to load the given probability distribution.
arXiv Detail & Related papers (2023-10-08T06:55:47Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - A Quantum Algorithm for Computing All Diagnoses of a Switching Circuit [73.70667578066775]
Faults are by nature while most man-made systems, and especially computers, work deterministically.
This paper provides such a connecting via quantum information theory which is an intuitive approach as quantum physics obeys probability laws.
arXiv Detail & Related papers (2022-09-08T17:55:30Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Quantum Extremal Learning [0.8937790536664091]
We propose a quantum algorithm for extremal learning', which is the process of finding the input to a hidden function that extremizes the function output.
The algorithm, called quantum extremal learning (QEL), consists of a parametric quantum circuit that is variationally trained to model data input-output relationships.
arXiv Detail & Related papers (2022-05-05T17:37:26Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
We propose an approach for learning probability distributions as differentiable quantum circuits (DQC)
We perform training of a DQC-based model, where data is encoded in a latent space with a phase feature map, followed by a variational quantum circuit.
This allows fast sampling from parametrized distributions using a single-shot readout.
arXiv Detail & Related papers (2022-02-16T18:55:48Z) - Quantum density estimation with density matrices: Application to quantum anomaly detection [8.893420660481734]
Density estimation is a central task in statistics and machine learning.
We present a novel quantum-classical density matrix density estimation model, called Q-DEMDE.
We also present an application of the method for quantum-classical anomaly detection.
arXiv Detail & Related papers (2022-01-24T23:40:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Quantum-enhanced analysis of discrete stochastic processes [0.8057006406834467]
We propose a quantum algorithm for calculating the characteristic function of a Discrete processes (DSP)
It completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps.
The algorithm takes all trajectories into account and hence eliminates the need of importance sampling.
arXiv Detail & Related papers (2020-08-14T16:07:35Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.