Determining probability density functions with adiabatic quantum
computing
- URL: http://arxiv.org/abs/2303.11346v2
- Date: Fri, 23 Jun 2023 13:22:41 GMT
- Title: Determining probability density functions with adiabatic quantum
computing
- Authors: Matteo Robbiati, Juan M. Cruz-Martinez and Stefano Carrazza
- Abstract summary: A reliable determination of probability density functions from data samples is still a relevant topic in scientific applications.
We define a classical-to-quantum data embedding procedure which maps the empirical cumulative distribution function of the sample into time dependent Hamiltonian.
The obtained Hamiltonian is then projected into a quantum circuit using the time evolution operator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A reliable determination of probability density functions from data samples
is still a relevant topic in scientific applications. In this work we
investigate the possibility of defining an algorithm for density function
estimation using adiabatic quantum computing. Starting from a sample of a
one-dimensional distribution, we define a classical-to-quantum data embedding
procedure which maps the empirical cumulative distribution function of the
sample into time dependent Hamiltonian using adiabatic quantum evolution. The
obtained Hamiltonian is then projected into a quantum circuit using the time
evolution operator. Finally, the probability density function of the sample is
obtained using quantum hardware differentiation through the parameter shift
rule algorithm. We present successful numerical results for predefined known
distributions and high-energy physics Monte Carlo simulation samples.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Efficient quantum loading of probability distributions through Feynman
propagators [2.56711111236449]
We present quantum algorithms for the loading of probability distributions using Hamiltonian simulation for one dimensional Hamiltonians of the form $hat H= Delta + V(x) mathbbI$.
We consider the potentials $V(x)$ for which the Feynman propagator is known to have an analytically closed form and utilize these Hamiltonians to load probability distributions into quantum states.
arXiv Detail & Related papers (2023-11-22T21:41:58Z) - Quantum state preparation for bell-shaped probability distributions using deconvolution methods [0.0]
We present a hybrid classical-quantum approach to load quantum data.
We use the Jensen-Shannon distance as the cost function to quantify the closeness of the outcome from the classical step and the target distribution.
The output from the deconvolution step is used to construct the quantum circuit required to load the given probability distribution.
arXiv Detail & Related papers (2023-10-08T06:55:47Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Quantum density estimation with density matrices: Application to quantum anomaly detection [8.893420660481734]
Density estimation is a central task in statistics and machine learning.
We present a novel quantum-classical density matrix density estimation model, called Q-DEMDE.
We also present an application of the method for quantum-classical anomaly detection.
arXiv Detail & Related papers (2022-01-24T23:40:00Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Quantum-enhanced analysis of discrete stochastic processes [0.8057006406834467]
We propose a quantum algorithm for calculating the characteristic function of a Discrete processes (DSP)
It completely defines its probability distribution, using the number of quantum circuit elements that grows only linearly with the number of time steps.
The algorithm takes all trajectories into account and hence eliminates the need of importance sampling.
arXiv Detail & Related papers (2020-08-14T16:07:35Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.