論文の概要: Diversity Enhancement via Magnitude
- arxiv url: http://arxiv.org/abs/2201.10037v1
- Date: Tue, 25 Jan 2022 01:38:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 22:47:11.614280
- Title: Diversity Enhancement via Magnitude
- Title(参考訳): マグニチュードによる多様性向上
- Authors: Steve Huntsman
- Abstract要約: 我々は最近開発された等級理論を用いて勾配流と類似の概念を構築し、ユークリッド空間の有限部分集合を体系的に操作してそれらの多様性を高める。
本稿では,主要なアルゴリズムを用いてベンチマーク問題に対する多様性向上を実証し,フレームワークの拡張について議論する。
- 参考スコア(独自算出の注目度): 7.005458308454871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Promoting and maintaining diversity of candidate solutions is a key
requirement of evolutionary algorithms in general and multi-objective
evolutionary algorithms in particular. In this paper, we use the recently
developed theory of magnitude to construct a gradient flow and similar notions
that systematically manipulate finite subsets of Euclidean space to enhance
their diversity, and apply the ideas in service of multi-objective evolutionary
algorithms. We demonstrate diversity enhancement on benchmark problems using
leading algorithms, and discuss extensions of the framework.
- Abstract(参考訳): 候補解の多様性の促進と維持は、一般的な多目的進化アルゴリズムにおける進化アルゴリズムの重要な要件である。
本稿では、最近開発された等級理論を用いて、ユークリッド空間の有限部分集合を体系的に操作し、その多様性を高め、多目的進化アルゴリズムのサービスに適用するグラデーションフローおよび類似の概念を構築する。
先導アルゴリズムを用いて,ベンチマーク問題に対する多様性の強化を実証し,フレームワークの拡張について考察する。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Deep Diversity-Enhanced Feature Representation of Hyperspectral Images [87.47202258194719]
トポロジを改良して3次元畳み込みを補正し,上行階の高次化を図る。
また、要素間の独立性を最大化するために特徴マップに作用する新しい多様性対応正規化(DA-Reg)項を提案する。
提案したRe$3$-ConvSetとDA-Regの優位性を実証するために,様々なHS画像処理および解析タスクに適用する。
論文 参考訳(メタデータ) (2023-01-15T16:19:18Z) - A Unified Algorithm Framework for Unsupervised Discovery of Skills based
on Determinantal Point Process [53.86223883060367]
教師なしオプション発見における多様性とカバレッジは、実際には同じ数学的枠組みの下で統一可能であることを示す。
提案アルゴリズムであるODPPは,MujocoとAtariで作成した課題に対して,広範囲に評価されている。
論文 参考訳(メタデータ) (2022-12-01T01:40:03Z) - Co-Evolutionary Diversity Optimisation for the Traveling Thief Problem [11.590506672325668]
本稿では,多成分走行盗難問題に対する2つの空間を同時に探索する共進化的アルゴリズムを提案する。
その結果,論文の基盤となる進化的多様性アルゴリズムと比較して,共進化的アルゴリズムの多様性を著しく向上させる能力を示した。
論文 参考訳(メタデータ) (2022-07-28T12:02:15Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
マルチモーダル最適化は高い適合性ソリューションを生み出し、品質の多様性は遺伝的中立性に敏感ではない。
オートエンコーダは表現型特徴を自動的に発見するために使用され、品質の多様性を備えたさらに多様なソリューションセットを生成する。
論文 参考訳(メタデータ) (2021-05-10T10:39:03Z) - Entropy-Based Evolutionary Diversity Optimisation for the Traveling
Salesperson Problem [11.590506672325668]
我々は,高次エントロピー尺度(High-order entropy measure)と呼ばれる集団多様性尺度を進化的アルゴリズムに応用し,トラベリングセールスパーソン問題に対する多様な高品質な解を求める。
最近提案されたエッジベースの多様性最適化アプローチと比較して,多数のソリューションや長いセグメントを扱う場合に比べて,大幅な改善が見られた。
論文 参考訳(メタデータ) (2021-04-28T02:36:14Z) - Semantic Neighborhood Ordering in Multi-objective Genetic Programming
based on Decomposition [0.0]
分割に基づく多目的進化アルゴリズム(MOEA/D)を用いた進化的多目的最適化(EMO)における意味多様性の促進方法を示す。
遺伝子プログラミングにおけるMOEA/Dのセマンティック多様性をいかに促進できるかを初めて示す。
論文 参考訳(メタデータ) (2021-02-28T12:18:37Z) - A New Many-Objective Evolutionary Algorithm Based on Determinantal Point
Processes [31.00549172139366]
Determinantal Point Processes (DPPs) と呼ばれるカーネル行列と確率モデルを導入する。
The many-Objective Evolutionary Algorithm with Determinantal Point Processes (MaOEADPPs) is presented and compared with several state-of-the-art algorithm。
論文 参考訳(メタデータ) (2020-12-15T03:22:06Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。