論文の概要: Riemannian Local Mechanism for SPD Neural Networks
- arxiv url: http://arxiv.org/abs/2201.10145v3
- Date: Fri, 19 May 2023 07:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 20:11:04.840319
- Title: Riemannian Local Mechanism for SPD Neural Networks
- Title(参考訳): spdニューラルネットワークのためのリーマン局所機構
- Authors: Ziheng Chen, Tianyang Xu, Xiao-Jun Wu, Rui Wang, Zhiwu Huang, Josef
Kittler
- Abstract要約: 我々は,SPDネットワークにおける局所的幾何情報の保存を確実にすることが最重要であると論じている。
まず、ユークリッドの深層ネットワークにおけるローカル情報を取得するためによく使われる畳み込み演算子を分析した。
この分析に基づいて、SPD多様体の局所情報を定義し、局所幾何学をマイニングするためのマルチスケールサブマニフォールドブロックを設計する。
- 参考スコア(独自算出の注目度): 43.789561494266316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Symmetric Positive Definite (SPD) matrices have received wide attention
for data representation in many scientific areas. Although there are many
different attempts to develop effective deep architectures for data processing
on the Riemannian manifold of SPD matrices, very few solutions explicitly mine
the local geometrical information in deep SPD feature representations. Given
the great success of local mechanisms in Euclidean methods, we argue that it is
of utmost importance to ensure the preservation of local geometric information
in the SPD networks. We first analyse the convolution operator commonly used
for capturing local information in Euclidean deep networks from the perspective
of a higher level of abstraction afforded by category theory. Based on this
analysis, we define the local information in the SPD manifold and design a
multi-scale submanifold block for mining local geometry. Experiments involving
multiple visual tasks validate the effectiveness of our approach. The
supplement and source code can be found in
https://github.com/GitZH-Chen/MSNet.git.
- Abstract(参考訳): 対称正定値行列(SPD)は多くの科学分野においてデータ表現に広く注目されている。
SPD行列のリーマン多様体上のデータ処理に有効な深層アーキテクチャを開発する試みは数多くあるが、深部SPD特徴表現における局所幾何学的情報を明示的に抽出する解はほとんどない。
ユークリッド法における局所的メカニズムの大きな成功を考えると、SPDネットワークにおける局所的幾何学情報の保存を確実にすることが最も重要であると論じる。
まず, ユークリッド深層ネットワークの局所情報取得に一般的に用いられる畳み込み演算子を, カテゴリー理論によって与えられる高レベルな抽象化の観点から解析する。
この分析に基づいて、SPD多様体の局所情報を定義し、局所幾何学をマイニングするためのマルチスケールサブマニフォールドブロックを設計する。
複数の視覚的タスクを含む実験は、我々のアプローチの有効性を検証する。
サプリメントとソースコードはhttps://github.com/GitZH-Chen/MSNet.gitにある。
関連論文リスト
- A Lie Group Approach to Riemannian Batch Normalization [59.48083303101632]
本稿では,リー群における正規化手法の統一的枠組みを確立する。
我々は3つの異なるリー群構造を持つ対称正定性(SPD)に焦点を当てる。
これらのリー群によって誘導される特定の正規化層は、SPDニューラルネットワークに対して提案される。
論文 参考訳(メタデータ) (2024-03-17T16:24:07Z) - Riemannian Self-Attention Mechanism for SPD Networks [34.794770395408335]
本稿では,SPD多様体自己アテンション機構(SMSA)を提案する。
構造化表現の識別を改善するためにSMSAベースの幾何学習モジュール(SMSA-GL)を設計する。
論文 参考訳(メタデータ) (2023-11-28T12:34:46Z) - Riemannian Multinomial Logistics Regression for SPD Neural Networks [60.11063972538648]
本稿では,Symmetric Positive Definite (SPD) 行列のための新しいタイプのディープニューラルネットワークを提案する。
我々のフレームワークは、既存のSPDネットワークで最も人気のあるLogEig分類器について、斬新な説明を提供する。
本手法の有効性は,レーダ認識,人行動認識,脳波分類(EEG)の3つの応用で実証された。
論文 参考訳(メタデータ) (2023-05-18T20:12:22Z) - Adaptive Log-Euclidean Metrics for SPD Matrix Learning [73.12655932115881]
広く使われているログユークリッド計量(LEM)を拡張した適応ログユークリッド計量(ALEM)を提案する。
実験および理論的結果から,SPDニューラルネットワークの性能向上における提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-26T18:31:52Z) - Bayesian Hyperbolic Multidimensional Scaling [2.5944208050492183]
低次元多様体が双曲型であるとき、多次元スケーリングに対するベイズ的アプローチを提案する。
ケース制御可能性近似は、より大きなデータ設定における後部分布からの効率的なサンプリングを可能にする。
提案手法は,シミュレーション,標準基準データセット,インディアン村のネットワークデータ,およびヒトの遺伝子発現データを用いて,最先端の代替手法に対して評価する。
論文 参考訳(メタデータ) (2022-10-26T23:34:30Z) - DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for
Visual Classification [36.848148506610364]
SPD行列学習のための新しいアーキテクチャを提案する。
深層表現を豊かにするために、SPDNetをバックボーンとして採用する。
次に、SRAEの表現能力を高めるために、ショートカット接続を持つ残余ブロックをいくつか挿入する。
論文 参考訳(メタデータ) (2022-06-16T07:15:20Z) - DeepSSN: a deep convolutional neural network to assess spatial scene
similarity [11.608756441376544]
本稿では,深部空間シーンネットワーク(Deep Space Scene Network,DeepSSN)を提案する。
提案したDeepSSNを用いて,スケッチマップを用いた空間問合せをユーザが入力する空間シーン探索システムを開発した。
提案手法は,データ拡張後の131,300個のラベル付きシーンサンプルを含むマルチソース・コンバウンド・マップデータを用いて検証する。
論文 参考訳(メタデータ) (2022-02-07T23:53:20Z) - DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous
Information Networks [64.62314068155997]
本稿では,異種情報ネットワーク(DeHIN)のための分散埋め込みフレームワークについて述べる。
DeHINは、大きなHINをハイパーグラフとして革新的に定式化するコンテキスト保存分割機構を提供する。
当社のフレームワークでは,木のようなパイプラインを採用することで,効率よくHINを分割する分散戦略を採用しています。
論文 参考訳(メタデータ) (2022-01-08T04:08:36Z) - Towards Interpretable Deep Networks for Monocular Depth Estimation [78.84690613778739]
我々は,深部MDEネットワークの解釈可能性について,その隠蔽ユニットの深さ選択性を用いて定量化する。
本稿では,解釈可能なMDE深層ネットワークを,元のアーキテクチャを変更することなく学習する手法を提案する。
実験により,本手法は深部MDEネットワークの解釈可能性を向上させることができることが示された。
論文 参考訳(メタデータ) (2021-08-11T16:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。