Distributed Image Transmission using Deep Joint Source-Channel Coding
- URL: http://arxiv.org/abs/2201.10340v1
- Date: Tue, 25 Jan 2022 14:25:26 GMT
- Title: Distributed Image Transmission using Deep Joint Source-Channel Coding
- Authors: Sixian Wang, Ke Yang, Jincheng Dai, Kai Niu
- Abstract summary: We study the problem of deep joint source-channel coding (D-JSCC) for correlated image sources.
We propose a deep neural networks solution that includes lightweight edge encoders and a powerful center decoder.
Our results show the impressive improvement of reconstruction quality in both links by exploiting the noisy representations of the other link.
- Score: 8.316711745589354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of deep joint source-channel coding (D-JSCC) for
correlated image sources, where each source is transmitted through a noisy
independent channel to the common receiver. In particular, we consider a pair
of images captured by two cameras with probably overlapping fields of view
transmitted over wireless channels and reconstructed in the center node. The
challenging problem involves designing a practical code to utilize both source
and channel correlations to improve transmission efficiency without additional
transmission overhead. To tackle this, we need to consider the common
information across two stereo images as well as the differences between two
transmission channels. In this case, we propose a deep neural networks solution
that includes lightweight edge encoders and a powerful center decoder. Besides,
in the decoder, we propose a novel channel state information aware cross
attention module to highlight the overlapping fields and leverage the relevance
between two noisy feature maps.Our results show the impressive improvement of
reconstruction quality in both links by exploiting the noisy representations of
the other link. Moreover, the proposed scheme shows competitive results
compared to the separated schemes with capacity-achieving channel codes.
Related papers
- A Hybrid Transformer-Mamba Network for Single Image Deraining [70.64069487982916]
Existing deraining Transformers employ self-attention mechanisms with fixed-range windows or along channel dimensions.
We introduce a novel dual-branch hybrid Transformer-Mamba network, denoted as TransMamba, aimed at effectively capturing long-range rain-related dependencies.
arXiv Detail & Related papers (2024-08-31T10:03:19Z) - Joint Sensing and Task-Oriented Communications with Image and Wireless
Data Modalities for Dynamic Spectrum Access [49.83882366499547]
This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters.
We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters.
We propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center.
arXiv Detail & Related papers (2023-12-21T15:26:26Z) - Distributed Deep Joint Source-Channel Coding with Decoder-Only Side
Information [6.411633100057159]
We consider low-latency image transmission over a noisy wireless channel when correlated side information is present only at the receiver side.
We propose a novel neural network architecture that incorporates the decoder-only side information at multiple stages at the receiver side.
arXiv Detail & Related papers (2023-10-06T15:17:45Z) - High Perceptual Quality Wireless Image Delivery with Denoising Diffusion
Models [10.763194436114194]
We consider the image transmission problem over a noisy wireless channel via deep learning-based joint source-channel coding (DeepJSCC)
We introduce a novel scheme that utilizes the range-null space decomposition of the target image.
We demonstrate significant improvements in distortion and perceptual quality of reconstructed images compared to standard DeepJSCC and the state-of-the-art generative learning-based method.
arXiv Detail & Related papers (2023-09-27T16:30:59Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Distributed Deep Joint Source-Channel Coding over a Multiple Access
Channel [0.0]
We consider distributed image transmission over a noisy multiple access channel (MAC) using deep joint source-channel coding (DeepJSCC)
We introduce a novel joint image compression and transmission scheme, where the devices send their compressed image representations in a non-orthogonal manner.
We show significant improvements in terms of the quality of the reconstructed images compared to transmission employing current DeepJSCC approaches.
arXiv Detail & Related papers (2022-11-17T22:36:03Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning [51.72869237847767]
In frequency-division duplexing systems, the downlink channel state information (CSI) acquisition scheme leads to high training and feedback overheads.
We propose an uplink-aided downlink channel acquisition framework using deep learning to reduce these overheads.
arXiv Detail & Related papers (2021-01-12T10:12:28Z) - Bandwidth-Agile Image Transmission with Deep Joint Source-Channel Coding [7.081604594416339]
We consider the scenario in which images are transmitted progressively in layers over time or frequency.
DeepJSCC-$l$ is an innovative solution that uses convolutional autoencoders.
DeepJSCC-$l$ has comparable performance with state of the art digital progressive transmission schemes in the challenging low signal-to-noise ratio (SNR) and small bandwidth regimes.
arXiv Detail & Related papers (2020-09-26T00:11:50Z) - Wireless Image Retrieval at the Edge [20.45405359815043]
We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server.
Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link.
We propose two alternative schemes based on digital and analog communications, respectively.
arXiv Detail & Related papers (2020-07-21T16:15:40Z) - Channel-Level Variable Quantization Network for Deep Image Compression [50.3174629451739]
We propose a channel-level variable quantization network to dynamically allocate more convolutions for significant channels and withdraws for negligible channels.
Our method achieves superior performance and can produce much better visual reconstructions.
arXiv Detail & Related papers (2020-07-15T07:20:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.