Concrete Problems in AI Safety, Revisited
- URL: http://arxiv.org/abs/2401.10899v1
- Date: Mon, 18 Dec 2023 23:38:05 GMT
- Title: Concrete Problems in AI Safety, Revisited
- Authors: Inioluwa Deborah Raji and Roel Dobbe
- Abstract summary: As AI systems proliferate in society, the AI community is increasingly preoccupied with the concept of AI Safety.
We demonstrate through an analysis of real world cases of such incidents that although current vocabulary captures a range of the encountered issues of AI deployment, an expanded socio-technical framing will be required.
- Score: 1.4089652912597792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI systems proliferate in society, the AI community is increasingly
preoccupied with the concept of AI Safety, namely the prevention of failures
due to accidents that arise from an unanticipated departure of a system's
behavior from designer intent in AI deployment. We demonstrate through an
analysis of real world cases of such incidents that although current vocabulary
captures a range of the encountered issues of AI deployment, an expanded
socio-technical framing will be required for a more complete understanding of
how AI systems and implemented safety mechanisms fail and succeed in real life.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems.
Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
arXiv Detail & Related papers (2024-08-23T09:33:48Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - A Red Teaming Framework for Securing AI in Maritime Autonomous Systems [0.0]
We propose one of the first red team frameworks for evaluating the AI security of maritime autonomous systems.
This framework is a multi-part checklist, which can be tailored to different systems and requirements.
We demonstrate this framework to be highly effective for a red team to use to uncover numerous vulnerabilities within a real-world maritime autonomous systems AI.
arXiv Detail & Related papers (2023-12-08T14:59:07Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Deception: A Survey of Examples, Risks, and Potential Solutions [20.84424818447696]
This paper argues that a range of current AI systems have learned how to deceive humans.
We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth.
arXiv Detail & Related papers (2023-08-28T17:59:35Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Safe AI -- How is this Possible? [0.45687771576879593]
Traditional safety engineering is coming to a turning point moving from deterministic, non-evolving systems operating in well-defined contexts to increasingly autonomous and learning-enabled AI systems acting in largely unpredictable operating contexts.
We outline some of underlying challenges of safe AI and suggest a rigorous engineering framework for minimizing uncertainty, thereby increasing confidence, up to tolerable levels, in the safe behavior of AI systems.
arXiv Detail & Related papers (2022-01-25T16:32:35Z) - Understanding and Avoiding AI Failures: A Practical Guide [0.6526824510982799]
We create a framework for understanding the risks associated with AI applications.
We also use AI safety principles to quantify the unique risks of increased intelligence and human-like qualities in AI.
arXiv Detail & Related papers (2021-04-22T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.