論文の概要: Distantly supervised end-to-end medical entity extraction from
electronic health records with human-level quality
- arxiv url: http://arxiv.org/abs/2201.10463v1
- Date: Tue, 25 Jan 2022 17:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-26 14:03:55.442480
- Title: Distantly supervised end-to-end medical entity extraction from
electronic health records with human-level quality
- Title(参考訳): 人的品質を有する電子健康記録からの遠隔管理型エンドツーエンド医療機関抽出
- Authors: Alexander Nesterov and Dmitry Umerenkov
- Abstract要約: 本稿では,電子健康記録(EHR)から医療用脳波を単一段階のマルチラベル分類タスクとして行う新しい手法を提案する。
我々のモデルは、医療知識ベースから自動的に抽出されたターゲットを用いて、遠距離から教師付きでエンドツーエンドに訓練されている。
我々の研究は、十分な量の未ラベルのEHRと医療知識ベースが利用できることを考えると、人間の監督なく、人的品質で、医療機関の抽出をエンドツーエンドで行えることを実証している。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical entity extraction (EE) is a standard procedure used as a first stage
in medical texts processing. Usually Medical EE is a two-step process: named
entity recognition (NER) and named entity normalization (NEN). We propose a
novel method of doing medical EE from electronic health records (EHR) as a
single-step multi-label classification task by fine-tuning a transformer model
pretrained on a large EHR dataset. Our model is trained end-to-end in an
distantly supervised manner using targets automatically extracted from medical
knowledge base. We show that our model learns to generalize for entities that
are present frequently enough, achieving human-level classification quality for
most frequent entities. Our work demonstrates that medical entity extraction
can be done end-to-end without human supervision and with human quality given
the availability of a large enough amount of unlabeled EHR and a medical
knowledge base.
- Abstract(参考訳): 医療エンティティ抽出(EE)は、医療テキスト処理の第1段階として使用される標準手順である。
通常、医療用eeは、エンティティ認識(ner)とエンティティ正規化(nen)の2段階のプロセスである。
本稿では,ehrデータセット上で事前学習したトランスフォーマーモデルを微調整することにより,電子健康記録(ehr)から医療用ehrを単段マルチラベル分類タスクとして行う新しい方法を提案する。
我々のモデルは、医療知識ベースから自動的に抽出されたターゲットを用いて、遠方から遠方まで訓練される。
また,本モデルでは,頻繁なエンティティを一般化し,最も頻繁なエンティティに対して人間レベルの分類品質を実現する。
我々の研究は、十分な量の未ラベルのEHRと医療知識ベースが利用できることを考えると、人間の監督なく、人的品質で、医療機関の抽出をエンドツーエンドで行うことができることを示す。
関連論文リスト
- FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Medは、医療ビジュアルインストラクションデータを自動生成できるポリシーモデルを訓練するために設計されている。
STLLaVA-Medの有効性とデータ効率を3つの主要な医用視覚質問応答(VQA)ベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-28T15:01:23Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and
Prognosis [19.32686665459374]
肺塞栓症(PE)リスクの高い大コホートからの非同定型経時的記録を含むINSPECTについて紹介する。
INSPECTには、CT画像、放射線医学報告印象セクション、構造化電子健康記録(EHR)データ(人口統計、診断、手順、バイタル、医薬品など)を含む19,402人のデータが含まれている。
論文 参考訳(メタデータ) (2023-11-17T07:28:16Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - How to Leverage Multimodal EHR Data for Better Medical Predictions? [13.401754962583771]
電子健康記録(EHR)データの複雑さは、ディープラーニングの適用の課題である。
本稿では,まずEHRから臨床ノートを抽出し,これらのデータを統合する方法を提案する。
2つの医療予測タスクの結果、異なるデータを持つ融合モデルが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-29T13:26:05Z) - Recognising Biomedical Names: Challenges and Solutions [9.51284672475743]
本稿では,不連続な言及を認識可能な遷移ベースNERモデルを提案する。
また、適切な事前学習データを通知する費用対効果のアプローチも開発している。
我々の貢献は、特に新しいバイオメディカル・アプリケーションが必要な場合に、明らかな実践的意味を持つ。
論文 参考訳(メタデータ) (2021-06-23T08:20:13Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。