論文の概要: DR.EHR: Dense Retrieval for Electronic Health Record with Knowledge Injection and Synthetic Data
- arxiv url: http://arxiv.org/abs/2507.18583v1
- Date: Thu, 24 Jul 2025 17:02:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:44.215777
- Title: DR.EHR: Dense Retrieval for Electronic Health Record with Knowledge Injection and Synthetic Data
- Title(参考訳): DR.EHR:知識注入と合成データによる電子健康記録の高密度検索
- Authors: Zhengyun Zhao, Huaiyuan Ying, Yue Zhong, Sheng Yu,
- Abstract要約: EHRは臨床実践において重要な役割を担っているが、その検索は主に意味的ギャップの問題によって困難である。
近年の高密度検索の進歩は有望なソリューションを提供するが、医療知識の不足やトレーニングコーパスのミスマッチにより、一般ドメインとバイオメディカルドメインの両方の既存のモデルは不足している。
本稿では,EHR検索に適した高密度検索モデルであるtexttDR.EHRを紹介する。
- 参考スコア(独自算出の注目度): 2.9929405444223205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic Health Records (EHRs) are pivotal in clinical practices, yet their retrieval remains a challenge mainly due to semantic gap issues. Recent advancements in dense retrieval offer promising solutions but existing models, both general-domain and biomedical-domain, fall short due to insufficient medical knowledge or mismatched training corpora. This paper introduces \texttt{DR.EHR}, a series of dense retrieval models specifically tailored for EHR retrieval. We propose a two-stage training pipeline utilizing MIMIC-IV discharge summaries to address the need for extensive medical knowledge and large-scale training data. The first stage involves medical entity extraction and knowledge injection from a biomedical knowledge graph, while the second stage employs large language models to generate diverse training data. We train two variants of \texttt{DR.EHR}, with 110M and 7B parameters, respectively. Evaluated on the CliniQ benchmark, our models significantly outperforms all existing dense retrievers, achieving state-of-the-art results. Detailed analyses confirm our models' superiority across various match and query types, particularly in challenging semantic matches like implication and abbreviation. Ablation studies validate the effectiveness of each pipeline component, and supplementary experiments on EHR QA datasets demonstrate the models' generalizability on natural language questions, including complex ones with multiple entities. This work significantly advances EHR retrieval, offering a robust solution for clinical applications.
- Abstract(参考訳): 電子健康記録(Electronic Health Records, EHRs)は、臨床実践において重要であるが、セマンティック・ギャップの問題が主な原因で、その検索は依然として課題である。
近年の高密度検索の進歩は有望なソリューションを提供するが、医療知識の不足やトレーニングコーパスのミスマッチにより、一般ドメインとバイオメディカルドメインの両方の既存のモデルは不足している。
本稿では, EHR 検索に適した高密度検索モデルである \texttt{DR.EHR} を紹介する。
我々はMIMIC-IV放電サマリーを利用した2段階トレーニングパイプラインを提案し,医療知識と大規模トレーニングデータの必要性に対処する。
第1段階では、バイオメディカル知識グラフから医療エンティティ抽出と知識注入を行い、第2段階では、多様なトレーニングデータを生成するために、大きな言語モデルを採用する。
110M と 7B のパラメータを持つ 2 種類の \texttt{DR.EHR} を訓練する。
CliniQベンチマークで評価すると、我々のモデルは既存の高密度レトリバーを著しく上回り、最先端の結果が得られます。
詳細な分析により、さまざまなマッチングやクエリタイプ、特に含意や省略といった難解なセマンティックマッチにおいて、モデルの優位性を確認します。
アブレーション研究は、各パイプラインコンポーネントの有効性を検証し、EHR QAデータセットの補足実験は、複数のエンティティを持つ複雑なものを含む自然言語問題に対するモデルの一般化可能性を示す。
この研究はEHR検索を大幅に進歩させ、臨床応用のための堅牢なソリューションを提供する。
関連論文リスト
- EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGEはRetrieval-Augmented Generation(RAG)駆動のフレームワークであり、マルチモーダルEHR予測モデリングを強化する。
時系列データと臨床ノートからエンティティを抽出し,LLM(Large Language Models)を誘導し,プロのPrimeKGと整合させる。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM [39.25272553560425]
本稿では,EHRにおける構造と意味を効果的に統合するMINGLEという新しいフレームワークを提案する。
本フレームワークでは,医療概念のセマンティクスと臨床ノートのセマンティクスをハイパーグラフニューラルネットワークに組み合わせるために,2段階の注入戦略を採用している。
2つのEHRデータセット(パブリックMIMIC-IIIとプライベートCRADLE)の実験結果から、MINGLEは予測性能を11.83%向上できることが示された。
論文 参考訳(メタデータ) (2024-02-19T23:48:40Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - sEHR-CE: Language modelling of structured EHR data for efficient and
generalizable patient cohort expansion [0.0]
sEHR-CEは、異種臨床データセットの統合表現型化と分析を可能にするトランスフォーマーに基づく新しいフレームワークである。
大規模研究である英国バイオバンクのプライマリ・セカンダリ・ケアデータを用いてアプローチを検証する。
論文 参考訳(メタデータ) (2022-11-30T16:00:43Z) - GenHPF: General Healthcare Predictive Framework with Multi-task
Multi-source Learning [9.406539794019581]
General Healthcare Predictive Framework (GenHPF) は、複数の予測タスクに対して最小限の事前処理を持つ任意の EHR に適用可能である。
我々のフレームワークは、マルチソース学習においてドメイン知識を利用するベースラインモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-07-20T12:46:26Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Pre-training transformer-based framework on large-scale pediatric claims
data for downstream population-specific tasks [3.1580072841682734]
本研究は、小児科のクレームデータセット全体をトレーニングする一般的な事前学習モデルであるClaim Pre-Training(Claim-PT)フレームワークを提案する。
効果的な知識伝達はタスク対応微調整段階を通じて完了する。
我々は100万人以上の患者記録を持つ実世界のクレームデータセットの実験を行った。
論文 参考訳(メタデータ) (2021-06-24T15:25:41Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。