論文の概要: INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and
Prognosis
- arxiv url: http://arxiv.org/abs/2311.10798v1
- Date: Fri, 17 Nov 2023 07:28:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 14:26:07.936567
- Title: INSPECT: A Multimodal Dataset for Pulmonary Embolism Diagnosis and
Prognosis
- Title(参考訳): INSPECT : 肺塞栓症診断と予後のためのマルチモーダルデータセット
- Authors: Shih-Cheng Huang, Zepeng Huo, Ethan Steinberg, Chia-Chun Chiang,
Matthew P. Lungren, Curtis P. Langlotz, Serena Yeung, Nigam H. Shah, Jason A.
Fries
- Abstract要約: 肺塞栓症(PE)リスクの高い大コホートからの非同定型経時的記録を含むINSPECTについて紹介する。
INSPECTには、CT画像、放射線医学報告印象セクション、構造化電子健康記録(EHR)データ(人口統計、診断、手順、バイタル、医薬品など)を含む19,402人のデータが含まれている。
- 参考スコア(独自算出の注目度): 19.32686665459374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthesizing information from multiple data sources plays a crucial role in
the practice of modern medicine. Current applications of artificial
intelligence in medicine often focus on single-modality data due to a lack of
publicly available, multimodal medical datasets. To address this limitation, we
introduce INSPECT, which contains de-identified longitudinal records from a
large cohort of patients at risk for pulmonary embolism (PE), along with ground
truth labels for multiple outcomes. INSPECT contains data from 19,402 patients,
including CT images, radiology report impression sections, and structured
electronic health record (EHR) data (i.e. demographics, diagnoses, procedures,
vitals, and medications). Using INSPECT, we develop and release a benchmark for
evaluating several baseline modeling approaches on a variety of important PE
related tasks. We evaluate image-only, EHR-only, and multimodal fusion models.
Trained models and the de-identified dataset are made available for
non-commercial use under a data use agreement. To the best of our knowledge,
INSPECT is the largest multimodal dataset integrating 3D medical imaging and
EHR for reproducible methods evaluation and research.
- Abstract(参考訳): 複数のデータソースから情報を合成することは、現代医学の実践において重要な役割を果たす。
医学における人工知能の現在の応用は、一般に利用可能なマルチモーダルな医療データセットが欠如しているため、しばしばシングルモダリティデータに焦点を当てている。
この制限に対処するために,肺塞栓症(PE)のリスクを負う患者の大コホートから非同定長大な記録と,複数の結果の真実ラベルを含むINSPECTを導入する。
INSPECTは、CT画像、放射線医学報告印象セクション、構造化電子健康記録(EHR)データ(人口統計、診断、手順、バイタル、医薬品)を含む19,402人の患者のデータを含んでいる。
inspectを用いて、様々な重要なpe関連タスクにおける複数のベースラインモデリングアプローチを評価するベンチマークを開発し、リリースする。
画像のみ, EHRのみ, マルチモーダル融合モデルの評価を行った。
トレーニングされたモデルと非識別データセットは、データ使用契約の下で非商用で利用可能である。
我々の知る限り、INSPECTは再現可能な手法の評価と研究のための3D医療画像とHRを統合した最大のマルチモーダルデータセットである。
関連論文リスト
- FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
EHRの値と測定値に画像処理を条件付け,臨床画像と表層データを融合させるハイパーネットワークに基づく新しいフレームワークを提案する。
我々は, 単一モダリティモデルと最先端MRI-タブラルデータ融合法の両方に優れることを示す。
論文 参考訳(メタデータ) (2024-03-20T05:50:04Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
この研究はRadFMと呼ばれるRadlogy Foundation Modelの開発を開始することを目的としている。
われわれの知る限りでは、これは2Dスキャンと3Dスキャンによる、最初の大規模で高品質な医療用ビジュアル言語データセットである。
本稿では,モダリティ認識,疾患診断,視覚的質問応答,レポート生成,合理的診断の5つのタスクからなる新しい評価ベンチマークRadBenchを提案する。
論文 参考訳(メタデータ) (2023-08-04T17:00:38Z) - Artificial Intelligence-Based Methods for Fusion of Electronic Health
Records and Imaging Data [0.9749560288448113]
我々は、AI技術を用いて、異なる臨床応用のためにマルチモーダル医療データを融合する文献の合成と分析に重点を置いている。
本報告では, 各種核融合戦略, マルチモーダル核融合を用いた疾患, 臨床成績, 利用可能なマルチモーダル医療データセットを包括的に分析する。
論文 参考訳(メタデータ) (2022-10-23T07:13:37Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
肺疾患診断のための知識駆動型およびデータ駆動型フレームワークを提案する。
本研究は, 臨床医学ガイドラインに従って診断規則を定式化し, テキストデータから規則の重みを学習する。
テキストと画像データからなるマルチモーダル融合は、肺疾患の限界確率を推定するために設計されている。
論文 参考訳(メタデータ) (2022-02-09T04:12:30Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。