Learning Multiple Probabilistic Degradation Generators for Unsupervised
Real World Image Super Resolution
- URL: http://arxiv.org/abs/2201.10747v1
- Date: Wed, 26 Jan 2022 04:49:11 GMT
- Title: Learning Multiple Probabilistic Degradation Generators for Unsupervised
Real World Image Super Resolution
- Authors: Sangyun Lee, Sewoong Ahn, Kwangjin Yoon
- Abstract summary: Unsupervised real world super resolution aims at restoring high-resolution (HR) images given low-resolution (LR) inputs when paired data is unavailable.
One of the most common approaches is synthesizing noisy LR images using GANs and utilizing a synthetic dataset to train the model in a supervised manner.
We propose a probabilistic degradation generator to approximate the distribution of LR images given a HR image.
- Score: 5.987801889633082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised real world super resolution (USR) aims at restoring
high-resolution (HR) images given low-resolution (LR) inputs when paired data
is unavailable. One of the most common approaches is synthesizing noisy LR
images using GANs and utilizing a synthetic dataset to train the model in a
supervised manner. The goal of modeling the degradation generator is to
approximate the distribution of LR images given a HR image. Previous works
simply assumed the conditional distribution as a delta function and learned the
deterministic mapping from HR image to a LR image. Instead, we propose the
probabilistic degradation generator. Our degradation generator is a deep
hierarchical latent variable model and more suitable for modeling the complex
distribution. Furthermore, we train multiple degradation generators to enhance
the mode coverage and apply the novel collaborative learning. We outperform
several baselines on benchmark datasets in terms of PSNR and SSIM and
demonstrate the robustness of our method on unseen data distribution.
Related papers
- Enhanced Super-Resolution Training via Mimicked Alignment for Real-World Scenes [51.92255321684027]
We propose a novel plug-and-play module designed to mitigate misalignment issues by aligning LR inputs with HR images during training.
Specifically, our approach involves mimicking a novel LR sample that aligns with HR while preserving the characteristics of the original LR samples.
We comprehensively evaluate our method on synthetic and real-world datasets, demonstrating its effectiveness across a spectrum of SR models.
arXiv Detail & Related papers (2024-10-07T18:18:54Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
We propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly.
Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-10-08T01:48:34Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Learning the Degradation Distribution for Blind Image Super-Resolution [43.95832398891317]
We propose a probabilistic degradation model (PDM), which studies the degradation $mathbfD$ as a random variable.
PDM could model more diverse degradations and generate HR-LR pairs that may better cover the various degradations of test images.
arXiv Detail & Related papers (2022-03-09T11:30:38Z) - SRDiff: Single Image Super-Resolution with Diffusion Probabilistic
Models [19.17571465274627]
Single image super-resolution (SISR) aims to reconstruct high-resolution (HR) images from the given low-resolution (LR) ones.
We propose a novel single image super-resolution diffusion probabilistic model (SRDiff)
SRDiff is optimized with a variant of the variational bound on the data likelihood and can provide diverse and realistic SR predictions.
arXiv Detail & Related papers (2021-04-30T12:31:25Z) - Super-Resolution of Real-World Faces [3.4376560669160394]
Real low-resolution (LR) face images contain degradations which are too varied and complex to be captured by known downsampling kernels.
In this paper, we propose a two module super-resolution network where the feature extractor module extracts robust features from the LR image.
We train a degradation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart.
arXiv Detail & Related papers (2020-11-04T17:25:54Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Closed-loop Matters: Dual Regression Networks for Single Image
Super-Resolution [73.86924594746884]
Deep neural networks have exhibited promising performance in image super-resolution.
These networks learn a nonlinear mapping function from low-resolution (LR) images to high-resolution (HR) images.
We propose a dual regression scheme by introducing an additional constraint on LR data to reduce the space of the possible functions.
arXiv Detail & Related papers (2020-03-16T04:23:42Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.