Fine-grained All-fiber Nonlocal Dispersion Compensation in the
Telecommunications O-Band
- URL: http://arxiv.org/abs/2201.10962v1
- Date: Wed, 26 Jan 2022 14:29:01 GMT
- Title: Fine-grained All-fiber Nonlocal Dispersion Compensation in the
Telecommunications O-Band
- Authors: RuiMing Chua, James A. Grieve, Alexander Ling
- Abstract summary: Photon timing correlations were preserved down to 51ps$pm$21ps over two multi-segmented 10km spans of deployed metropolitan fiber.
This degree of compensation can be achieved with relatively large fiber (1km), compatible with real-world deployment.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlocal dispersion compensation between broadband photon pairs propagated
over fiber corresponding to the ITU-T G.652D telecommunications standard was
studied via fine-grained measurements of the temporal correlation between them.
We demonstrated near-ideal levels of nonlocal dispersion compensation by
adjusting the propagation distance of the photon pairs to preserve photon
timing correlations close to the effective instrument resolution of our
detection apparatus (41.0$\pm$0.1ps). Experimental data indicates that this
degree of compensation can be achieved with relatively large fiber increments
(1km), compatible with real-world deployment. Ultimately, photon timing
correlations were preserved down to 51ps$\pm$21ps over two multi-segmented 10km
spans of deployed metropolitan fiber.
Related papers
- Ultrabright fiber-coupled ploarization-entangled photon source with spectral brightness surpassing 2.0 MHz/mW/nm [0.6581049960856515]
We present an ultrabright polarization-entangled photon source that is optimally coupled into single-mode fibers.
By employing a simple mode-matching optical setup, we optimize the SMF coupling and heralding efficiencies of the photon-pairs.
This represents the highest spectral brightness of SPDC photons generated using a CW laser pumped bulk crystal to date.
arXiv Detail & Related papers (2024-09-23T23:50:03Z) - Measurement of ultrashort bi-photon correlation times with an integrated
two-colour broadband SU(1,1)-interferometer [0.0]
The bi-photon correlation time is a key performance identifier for many quantum spectroscopy applications.
Here, we retrieve ultrashort bi-photon correlation times of around $100,mathrmfs$ by measuring simultaneously spectral and temporal interferograms.
arXiv Detail & Related papers (2023-10-06T14:51:30Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - Distributing Polarization Entangled Photon Pairs with High Rate over
Long Distance through Standard Telecommunication Fiber [0.0]
Entanglement distribution over long distances is essential for many quantum communication schemes.
We present entanglement distribution over 50km of standard telecommunication fiber with pair rate more than 10,000 s$-1$ using a bright non-degenerate photon pair source.
arXiv Detail & Related papers (2022-04-22T08:40:19Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Implementation of quantum synchronization over a 20-km fiber distance
based on frequency-correlated photon pairs and HOM interference [3.9137835408510298]
The quantum synchronization based on frequency-correlated photon pairs and HOM interference has shown femtosecond-level precision.
Due to the difficulty of achieving stable HOM interference fringe after long-distance fiber transmission, this quantum synchronization is hampered from long-haul field application.
We successfully achieved the stable observation of the two-photon interference of the lab-developed broadband frequency-correlated photon pairs after 20 km-long fiber transmission.
arXiv Detail & Related papers (2021-06-26T09:45:28Z) - Broadband Fiber-based Entangled Photon Pair Source at Telecom O-band [0.3463527836552467]
Biphotons generated from type-II SPDC are polarization-entangled over the entire emission bandwidth.
Biphoton source provides the broadest bandwidth entangled biphotons at O-band to our knowledge.
arXiv Detail & Related papers (2021-02-25T02:01:14Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Stable Polarization Entanglement based Quantum Key Distribution over
Metropolitan Fibre Network [55.41644538483948]
We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-entangled photons generated at the O-band.
One of the photons in the pairs are propagated through 10km of deployed fiber while the others are detected locally.
This ensures continuous and stable QKD operation with an average QBER of 6.4% and a final key rate of 109 bits/s.
arXiv Detail & Related papers (2020-07-04T02:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.