Multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model
- URL: http://arxiv.org/abs/2204.09899v3
- Date: Fri, 28 Apr 2023 04:53:46 GMT
- Title: Multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model
- Authors: Shu-Yuan Jiang, Fen Zou, Yi Wang, Jin-Feng Huang, Xun-Wei Xu, Jie-Qiao
Liao
- Abstract summary: We study the multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model.
Our work paves the way towards the study of multiple-photon quantum coherent devices.
- Score: 3.307097167756987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the multiple-photon bundle emission in the $n$-photon
Jaynes-Cummings model composed of a two-level system coupled to a single-mode
optical field via the $n$-photon exciting process. Here, the two-level system
is strongly driven by a near-resonant monochromatic field, and hence the system
can work in the Mollow regime, in which a super-Rabi oscillation between the
zero-photon state and the $n$-photon state can take place under proper resonant
conditions. We calculate the photon number populations and the standard
equal-time high-order correlation functions, and find that the multiple-photon
bundle emission can occur in this system. The multiple-photon bundle emission
is also confirmed by investigating the quantum trajectories of the state
populations and both the standard and generalized time-delay second-order
correlation functions for multiple-photon bundle. Our work paves the way
towards the study of multiple-photon quantum coherent devices, with potential
application in quantum information sciences and technologies.
Related papers
- Few-Photon SUPER: Quantum emitter inversion via two off-resonant photon modes [0.0]
We investigate an extended Jaynes-Cummings model where two photon modes are coupled off-resonantly to a quantum emitter.
We identify few-photon scattering mechanisms that lead to a full inversion of the emitter while transferring off-resonant photons from one mode to another.
Our results can be understood as quantized analogue of the recently developed off-resonant quantum control scheme known as Swing-UP of quantum EmitteR.
arXiv Detail & Related papers (2024-05-30T14:32:18Z) - Two-mode correlated multiphoton bundle emission [3.3752225883519404]
Two-mode correlated multiphoton bundle emission in a nondegenerate multiphoton Jaynes-Cummings model is studied.
Results show that there is an antibunching effect between the strongly-correlated photon bundles, so that the system behaves as an antibunched ($n+m$)-photon source.
arXiv Detail & Related papers (2023-09-16T03:31:10Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Dynamical $N$-photon bundle emission [6.259066812918972]
We propose a concept of dynamical emission of $N$ strongly-correlated photons.
This is realized in a circuit quantum electrodynamical system driven by two Gaussian-pulse sequences.
arXiv Detail & Related papers (2023-04-22T03:00:26Z) - Deterministic generation of multi-photon bundles in a quantum Rabi model [7.475750944627122]
We propose a scheme that generates multi-photon bundles via virtual excitations in a quantum Rabi model.
We show that the driving pulses induce deterministic emission of multiple photons from the eigenstates of the quantum Rabi model.
We calculate the generalized second-order correlation functions of the output photons, which reveal that the emitted photons form antibunched multi-photon bundles.
arXiv Detail & Related papers (2022-10-07T15:21:33Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.