論文の概要: Semantic Code Classification for Automated Machine Learning
- arxiv url: http://arxiv.org/abs/2201.11252v1
- Date: Tue, 25 Jan 2022 10:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-29 05:49:24.397377
- Title: Semantic Code Classification for Automated Machine Learning
- Title(参考訳): 自動機械学習のための意味的コード分類
- Authors: Polina Guseva, Anastasia Drozdova, Natalia Denisenko, Daria
Sapozhnikova, Ivan Pyaternev, Anna Scherbakova, Andrey Ustuzhanin
- Abstract要約: セマンティックコードクラスと呼ばれる単純なアクションのシーケンスを通じて出力を制御する方法を提案する。
本稿では,自然言語から機械学習(NL2ML)データセットにおいて,意味的コード分類タスクを提案し,この問題を解決する方法について議論する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A range of applications for automatic machine learning need the generation
process to be controllable. In this work, we propose a way to control the
output via a sequence of simple actions, that are called semantic code classes.
Finally, we present a semantic code classification task and discuss methods for
solving this problem on the Natural Language to Machine Learning (NL2ML)
dataset.
- Abstract(参考訳): 自動機械学習の幅広い応用は、生成プロセスを制御可能である必要がある。
本研究では,セマンティックコードクラスと呼ばれる単純なアクションのシーケンスを通じて出力を制御する手法を提案する。
最後に,自然言語から機械学習(NL2ML)データセットにおいて,意味的コード分類タスクを提案し,この問題を解決する方法について議論する。
関連論文リスト
- A General Recipe for Automated Machine Learning in Practice [0.0]
本稿では,一般的なAutoMLシステム構築のための参照フレームを提案する。
私たちの主なアイデアは、基本的な概念を抽出して、それらを単一の設計でサポートすることです。
本稿では,AutoMLの今後の研究への応用に関するオープンな問題について論じる。
論文 参考訳(メタデータ) (2023-08-29T21:49:28Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Using Document Similarity Methods to create Parallel Datasets for Code
Translation [60.36392618065203]
あるプログラミング言語から別のプログラミング言語へのソースコードの翻訳は、重要で時間を要する作業です。
本稿では、文書類似性手法を用いて、ノイズの多い並列データセットを作成することを提案する。
これらのモデルは、妥当なレベルのノイズに対して、地上の真実に基づいて訓練されたモデルと相容れない性能を示す。
論文 参考訳(メタデータ) (2021-10-11T17:07:58Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
深部強化学習(DRL)のサンプル効率と最終性能を向上させるために,各種自動カリキュラム学習(ACL)手法が提案されている。
本稿では,多目的だがコヒーレントなカリキュラムを作成するための統合された自動カリキュラム学習フレームワークを提案する。
既存の手設計のカリキュラムパラダイムに加えて,抽象カリキュラムを学習するためのフレキシブルなメモリ機構を設計する。
論文 参考訳(メタデータ) (2021-10-06T19:30:25Z) - AutoSpeech 2020: The Second Automated Machine Learning Challenge for
Speech Classification [31.22181821515342]
AutoSpeechチャレンジでは、機械学習を音声処理タスクに適用するプロセスを自動化するために、自動機械学習(AutoML)ソリューションが求められている。
本稿では,課題プロトコル,データセット,評価基準,開始キット,ベースラインシステムについて概説する。
論文 参考訳(メタデータ) (2020-10-25T15:01:41Z) - AutoML to Date and Beyond: Challenges and Opportunities [30.60364966752454]
AutoMLツールは、機械学習を非機械学習の専門家が利用できるようにすることを目的としている。
本稿では,AutoMLシステムのための新しい分類システムを提案する。
エンド・ツー・エンドの機械学習パイプラインのさらなる自動化に必要な研究を指摘して、将来のロードマップを策定しました。
論文 参考訳(メタデータ) (2020-10-21T06:08:21Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
本稿では,Regressed Learning (RL)タスクにおけるサブゴールの学習と活用のためのISAを提案する。
ISAは、タスクのサブゴールによってエッジがラベル付けされたオートマトンであるサブゴールオートマトンを誘導することで強化学習をインターリーブする。
サブゴールオートマトンはまた、タスクの完了を示す状態と、タスクが成功せずに完了したことを示す状態の2つの特別な状態で構成されている。
論文 参考訳(メタデータ) (2020-09-08T16:42:55Z) - Lale: Consistent Automated Machine Learning [7.972562716069225]
Laleは、自動化された機械学習を一貫した方法で単純化し統一する、ハイレベルなPythonインターフェースのライブラリである。
本稿では,自動機械学習を一貫した方法で単純化・統一する,ハイレベルPythonインタフェースのライブラリであるLaleを紹介する。
論文 参考訳(メタデータ) (2020-07-04T00:55:41Z) - SOLOIST: Building Task Bots at Scale with Transfer Learning and Machine
Teaching [81.45928589522032]
トランスフォーマーに基づく自動回帰言語モデルを用いて,モジュール型タスク指向対話システムをパラメータ化する。
タスクグラウンド応答生成モデルである異種ダイアログコーパスの事前学習を行う。
実験により、SOLOISTは、よく研究されたタスク指向のダイアログベンチマーク上で、新しい最先端のダイアログを生成する。
論文 参考訳(メタデータ) (2020-05-11T17:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。