論文の概要: Epistemic AI platform accelerates innovation by connecting biomedical
knowledge
- arxiv url: http://arxiv.org/abs/2201.11331v2
- Date: Sun, 30 Jan 2022 05:10:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 14:11:34.875523
- Title: Epistemic AI platform accelerates innovation by connecting biomedical
knowledge
- Title(参考訳): てんかんのAIプラットフォームは、バイオメディカル知識を結びつけてイノベーションを加速する
- Authors: Emily Koo, Heather Bowling, Kenneth Ashworth, David J. Heeger, Stefano
Pacifico
- Abstract要約: 疫学的AIは、バイオメディカル知識のネットワークに隠れた接続を見つけることによって、生物医学的な発見を加速する。
システムは知識グラフと自然言語処理(NLP)、情報検索、関連フィードバック、ネットワーク分析に頼っている。
システムは、情報抽出のための最先端の手法と、機械学習、人工知能、ネットワーク分析を組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epistemic AI accelerates biomedical discovery by finding hidden connections
in the network of biomedical knowledge. The Epistemic AI web-based software
platform embodies the concept of knowledge mapping, an interactive process that
relies on a knowledge graph in combination with natural language processing
(NLP), information retrieval, relevance feedback, and network analysis.
Knowledge mapping reduces information overload, prevents costly mistakes, and
minimizes missed opportunities in the research process. The platform combines
state-of-the-art methods for information extraction with machine learning,
artificial intelligence and network analysis. Starting from a single biological
entity, such as a gene or disease, users may: a) construct a map of connections
to that entity, b) map an entire domain of interest, and c) gain insight into
large biological networks of knowledge. Knowledge maps provide clarity and
organization, simplifying the day-to-day research processes.
- Abstract(参考訳): 疫学的AIは、バイオメディカル知識のネットワークに隠れた接続を見つけることによって、生物医学的な発見を加速する。
認識論的ai webベースのソフトウェアプラットフォームは、ナレッジグラフと自然言語処理(nlp)、情報検索、関連性フィードバック、ネットワーク分析を組み合わせたインタラクティブなプロセスであるナレッジマッピングの概念を具現化している。
知識マッピングは、情報過負荷を削減し、コストのかかるミスを防止し、研究プロセスの機会を最小化する。
このプラットフォームは、情報抽出のための最先端の手法と、機械学習、人工知能、ネットワーク分析を組み合わせたものだ。
ユーザーは、遺伝子や病気のような単一の生物学的実体から始めることができる。
a)その実体への接続の地図を構築すること
b) 利害関係の全領域を地図化し、
c) 知識の大きな生物学的ネットワークに対する洞察を得ること。
知識マップは明確さと組織を提供し、日々の研究プロセスを簡素化する。
関連論文リスト
- EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications [0.2826977330147589]
機械学習モデルの事前処理、トレーニング、評価、可視化が可能なWebベースのエンドツーエンドパイプラインを提案する。
本ライブラリは,マルチモーダル・マルチセンサ・データセットの認識,分類,クラスタリング,および予測を支援する。
論文 参考訳(メタデータ) (2024-03-27T02:24:38Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Language Knowledge-Assisted Representation Learning for Skeleton-Based
Action Recognition [71.35205097460124]
人間が他人の行動を理解して認識する方法は、複雑な神経科学の問題である。
LA-GCNは、大規模言語モデル(LLM)知識アシストを用いたグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T08:29:16Z) - BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph
Construction and Analysis [0.4893345190925178]
本稿では,バイオメディカル臨床ノートからの知識抽出と分析のためのエンドツーエンドアプローチを提案する。
提案フレームワークは, 関連構造化情報を高精度に抽出できる。
論文 参考訳(メタデータ) (2023-04-21T14:45:33Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities [18.434430658837258]
我々は,ネットワークを用いたモデリング,分析,学習への表現学習技術の急速な拡大を目の当たりにした。
本論では,ネットワーク生物学と医学の長年の原則が,表現学習の概念的基盤を提供できるという見解を述べる。
位相的特徴を利用してネットワークをコンパクトなベクトル空間に埋め込むアルゴリズムアプローチのスペクトルを合成する。
論文 参考訳(メタデータ) (2021-04-11T00:20:00Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
我々は,創薬の現実世界における課題に基づいて経験的研究を行う。
我々は,この課題を,化合物と疾患の両方が知識グラフの実体に対応するリンク予測問題として定式化する。
本稿では,強化学習と論理ルールに基づく政策誘導歩行を組み合わせた新しい手法PoLoを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:46:11Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
複数のニューラルネットワークからインポートされた知識を格納できる継続的知識基盤を構築する方法を提案する。
テキスト分類実験は有望な結果を示す。
我々は複数のモデルから知識ベースに知識をインポートし、そこから融合した知識を単一のモデルにエクスポートする。
論文 参考訳(メタデータ) (2020-12-25T12:27:44Z) - Benchmark and Best Practices for Biomedical Knowledge Graph Embeddings [8.835844347471626]
SNOMED-CT知識グラフ上に,いくつかの最先端知識グラフ埋め込みモデルを学習する。
本稿では,バイオメディカル知識表現の学習に知識グラフのマルチリレーショナルな性質を活用することの重要性を論じる。
論文 参考訳(メタデータ) (2020-06-24T14:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。