論文の概要: Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities
- arxiv url: http://arxiv.org/abs/2104.04883v1
- Date: Sun, 11 Apr 2021 00:20:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 06:47:59.519760
- Title: Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities
- Title(参考訳): 生物学と医学におけるネットワークのための表現学習--進歩、挑戦、機会
- Authors: Michelle M. Li, Kexin Huang, Marinka Zitnik
- Abstract要約: 我々は,ネットワークを用いたモデリング,分析,学習への表現学習技術の急速な拡大を目の当たりにした。
本論では,ネットワーク生物学と医学の長年の原則が,表現学習の概念的基盤を提供できるという見解を述べる。
位相的特徴を利用してネットワークをコンパクトなベクトル空間に埋め込むアルゴリズムアプローチのスペクトルを合成する。
- 参考スコア(独自算出の注目度): 18.434430658837258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the remarkable success of representation learning in providing powerful
predictions and data insights, we have witnessed a rapid expansion of
representation learning techniques into modeling, analysis, and learning with
networks. Biomedical networks are universal descriptors of systems of
interacting elements, from protein interactions to disease networks, all the
way to healthcare systems and scientific knowledge. In this review, we put
forward an observation that long-standing principles of network biology and
medicine -- while often unspoken in machine learning research -- can provide
the conceptual grounding for representation learning, explain its current
successes and limitations, and inform future advances. We synthesize a spectrum
of algorithmic approaches that, at their core, leverage topological features to
embed networks into compact vector spaces. We also provide a taxonomy of
biomedical areas that are likely to benefit most from algorithmic innovation.
Representation learning techniques are becoming essential for identifying
causal variants underlying complex traits, disentangling behaviors of single
cells and their impact on health, and diagnosing and treating diseases with
safe and effective medicines.
- Abstract(参考訳): 強力な予測とデータインサイトを提供するための表現学習の驚くべき成功により、表現学習技術のネットワークによるモデリング、分析、学習への急速な拡大を目の当たりにした。
バイオメディカルネットワークは、タンパク質相互作用から病気ネットワーク、医療システムや科学知識に至るまで、相互作用する要素のシステムの普遍的な記述子である。
本稿では、ニューラルネットワーク生物学と医学の長年の原則が、機械学習研究でしばしば取り上げられるが、表現学習の概念的基盤を提供し、その現在の成功と限界を説明し、将来の進歩を知らせる、という見解を示した。
我々は,ネットワークをコンパクトベクトル空間に埋め込むための位相的特徴を活用するアルゴリズム的手法のスペクトルを合成する。
また、アルゴリズムの革新から最も恩恵を受ける可能性のある生物医学分野の分類も提供する。
表現学習技術は、複雑な形質の根底にある因果変異の同定、単一細胞の分離行動とその健康への影響、安全で効果的な薬剤による疾患の診断と治療に不可欠である。
関連論文リスト
- Simplicity within biological complexity [0.0]
文献を調査し、マルチスケール分子ネットワークデータの埋め込みのための包括的フレームワークの開発について論じる。
ネットワーク埋め込み手法はノードを低次元空間の点にマッピングすることにより、学習空間の近接性はネットワークのトポロジ-関数関係を反映する。
本稿では,モデルから効率的かつスケーラブルなソフトウェア実装に至るまで,マルチオミックネットワークデータのための汎用的な包括的埋め込みフレームワークを開発することを提案する。
論文 参考訳(メタデータ) (2024-05-15T13:32:45Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
我々は,皮質表面の深層学習のためのフレームワークを開発した。
まず,表面データに摂動に基づくアプローチを適用した。
我々の説明可能性フレームワークは,重要な特徴とその空間的位置を識別できるだけでなく,信頼性と有効性も示している。
論文 参考訳(メタデータ) (2022-03-15T23:16:49Z) - Convolutional Motif Kernel Networks [1.104960878651584]
我々のモデルは、小さなデータセットでしっかりと学習でき、関連する医療予測タスクで最先端のパフォーマンスを達成できることを示す。
提案手法はDNAおよびタンパク質配列に利用することができる。
論文 参考訳(メタデータ) (2021-11-03T15:06:09Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
表現上の相似性を定量化する計量空間の族を提供する。
我々は、正準相関解析に基づいて既存の表現類似度尺度を修正し、三角形の不等式を満たす。
解剖学的特徴とモデル性能の観点から解釈可能な神経表現の関係を同定する。
論文 参考訳(メタデータ) (2021-10-27T19:48:55Z) - A Survey on Graph-Based Deep Learning for Computational Histopathology [36.58189530598098]
我々は、デジタル病理と生検画像パッチの分析に機械学習と深層学習の利用が急速に拡大しているのを目撃した。
畳み込みニューラルネットワークを用いたパッチワイド機能に関する従来の学習は、グローバルなコンテキスト情報をキャプチャしようとする際のモデルを制限する。
本稿では,グラフに基づく深層学習の概念的基盤を提供し,腫瘍の局在と分類,腫瘍浸潤とステージング,画像検索,生存予測の現在の成功について論じる。
論文 参考訳(メタデータ) (2021-07-01T07:50:35Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
医療データを分析するために、機械学習、特にディープラーニングメソッドをどのように活用するかを検討することが重要になっている。
既存のメソッドの大きな制限は、グリッドのようなデータにフォーカスすることです。
グラフニューラルネットワークは、生物学的システムに存在する暗黙の情報を利用することによって、大きな注目を集めている。
論文 参考訳(メタデータ) (2021-05-27T13:32:45Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。