Quantum simulation of dissipative collective effects on noisy quantum
computers
- URL: http://arxiv.org/abs/2201.11597v1
- Date: Thu, 27 Jan 2022 15:50:58 GMT
- Title: Quantum simulation of dissipative collective effects on noisy quantum
computers
- Authors: Marco Cattaneo, Matteo A. C. Rossi, Guillermo Garc\'ia-P\'erez,
Roberta Zambrini, Sabrina Maniscalco
- Abstract summary: We put forward the first fully quantum simulation of dissipative collective phenomena on a real quantum computer.
The quantum simulation is based on the recently introduced multipartite collision model.
We implement the algorithm on some IBM quantum computers to simulate superradiance and subradiance between a pair of qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dissipative collective effects are ubiquitous in quantum physics, and their
relevance ranges from the study of entanglement in biological systems to noise
mitigation in quantum computers. Here, we put forward the first fully quantum
simulation of dissipative collective phenomena on a real quantum computer. The
quantum simulation is based on the recently introduced multipartite collision
model, which reproduces the action of a dissipative common environment by means
of repeated interactions between the system and some ancillary qubits. First,
we theoretically study the accuracy of this algorithm on near-term quantum
computers with noisy gates, and we derive some rigorous error bounds which
depend on the timestep of the collision model and on the gate errors. These
bounds can be employed to estimate the necessary resources for the efficient
quantum simulation of the collective dynamics. Then, we implement the algorithm
on some IBM quantum computers to simulate superradiance and subradiance between
a pair of qubits. Our experimental results successfully display the emergence
of collective effects in the quantum simulation. Finally, we analyze the noise
properties of the gates we employed in the algorithm by means of full process
tomography. Using the state-of-the-art tools for noise analysis in quantum
computers, we obtain the values of the average gate fidelity, unitarity and
diamond error, and we establish a connection between them and the accuracy of
the experimentally simulated state. Although the scaling of the error as a
function of the number of gates is favorable, we observe that reaching the
threshold for quantum fault tolerant computation is still orders of magnitude
away.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A quantum computing concept for 1-D elastic wave simulation with exponential speedup [0.0]
We present a quantum computing concept for 1-D elastic wave propagation in heterogeneous media.
The method rests on a finite-difference approximation, followed by a sparsity-preserving transformation of the discrete elastic wave equation to a Schr"odinger equation.
An implementation on an error-free quantum simulator verifies our approach and forms the basis of numerical experiments.
arXiv Detail & Related papers (2023-12-22T14:58:01Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
We present a novel approach that capitalizes on the intrinsic noise of quantum devices to reduce the computational resources required for simulating open quantum systems.
Specifically, we selectively enhance or reduce decoherence rates in the quantum circuit to achieve the desired simulation of open system dynamics.
arXiv Detail & Related papers (2023-02-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Neural Error Mitigation of Near-Term Quantum Simulations [0.0]
We introduce $textitneural error mitigation$, a novel method that uses neural networks to improve estimates of ground states and ground-state observables.
Our results show that neural error mitigation improves the numerical and experimental VQE computation to yield low-energy errors.
Our method is a promising strategy for extending the reach of near-term quantum computers to solve complex quantum simulation problems.
arXiv Detail & Related papers (2021-05-17T18:00:57Z) - Simulating a ring-like Hubbard system with a quantum computer [0.0]
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems.
We study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed.
We locate this transition and solve for the ground state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer.
arXiv Detail & Related papers (2021-04-13T18:08:09Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.