論文の概要: No-brainer: Morphological Computation driven Adaptive Behavior in Soft Robots
- arxiv url: http://arxiv.org/abs/2407.16613v1
- Date: Tue, 23 Jul 2024 16:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 16:36:00.393597
- Title: No-brainer: Morphological Computation driven Adaptive Behavior in Soft Robots
- Title(参考訳): No-brainer: ソフトロボットのモルフォロジー計算駆動型適応行動
- Authors: Alican Mertan, Nick Cheney,
- Abstract要約: ロボット制御のための分離された明示的な脳がなくても、インテリジェントな行動が作成できることを示す。
具体的には, 簡単な反応材料を用いて, ボクセルをベースとした仮想ソフトロボットにおいて適応的かつ複雑な動作を創出できることを示す。
- 参考スコア(独自算出の注目度): 0.24554686192257422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is prevalent in contemporary AI and robotics to separately postulate a brain modeled by neural networks and employ it to learn intelligent and adaptive behavior. While this method has worked very well for many types of tasks, it isn't the only type of intelligence that exists in nature. In this work, we study the ways in which intelligent behavior can be created without a separate and explicit brain for robot control, but rather solely as a result of the computation occurring within the physical body of a robot. Specifically, we show that adaptive and complex behavior can be created in voxel-based virtual soft robots by using simple reactive materials that actively change the shape of the robot, and thus its behavior, under different environmental cues. We demonstrate a proof of concept for the idea of closed-loop morphological computation, and show that in our implementation, it enables behavior mimicking logic gates, enabling us to demonstrate how such behaviors may be combined to build up more complex collective behaviors.
- Abstract(参考訳): 現代のAIやロボット工学において、ニューラルネットワークによってモデル化された脳を別々に仮定し、インテリジェントで適応的な振る舞いを学ぶために使用することが一般的である。
この方法は、多くのタスクに対して非常にうまく機能していますが、自然に存在する唯一のインテリジェンスタイプではありません。
本研究では,ロボットの身体内で発生する計算の結果として,ロボット制御のための別々で明示的な脳を使わずに,知的行動が生成できる方法について検討する。
具体的には,ボクセルをベースとした仮想ソフトロボットにおいて,ロボットの形状を積極的に変化させるシンプルな反応材料を用いることで,適応的かつ複雑な動作を創出できることを示す。
本研究では,閉ループ形態計算の概念の実証を行い,論理ゲートを模倣する動作が可能であることを示す。
関連論文リスト
- Evolution and learning in differentiable robots [0.0]
我々は、異なるシミュレーションを用いて、多数の候補体計画において、行動の個々の神経制御を迅速かつ同時に最適化する。
個体群における各ロボットの機械的構造の変化は,探索の外ループに遺伝的アルゴリズムを適用した。
シミュレーションで発見された非常に微分可能な形態の1つは、物理ロボットとして実現され、その最適化された振る舞いを維持できた。
論文 参考訳(メタデータ) (2024-05-23T15:45:43Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - From Biological Synapses to Intelligent Robots [0.0]
ヘビアンシナプス学習は、機械学習とインテリジェンスのための機能的関連モデルとして議論されている。
適応的な学習と制御の可能性を、監督なしで先導する。
ここで収集された洞察は、インテリジェントなロボティクスとセンサーシステムの選択ソリューションとして、Hebbianモデルに向けられている。
論文 参考訳(メタデータ) (2022-02-25T12:39:22Z) - A neural net architecture based on principles of neural plasticity and
development evolves to effectively catch prey in a simulated environment [2.834895018689047]
A-Lifeにとっての大きな課題は、行動が「ライフライク」なエージェントを深く構築することである。
本稿では,動物の脳を構成するプロセスに類似したプロセスを用いて,人工エージェントを駆動するネットワークを構築するためのアーキテクチャとアプローチを提案する。
このアーキテクチャは、センサー入力の変化に対する迅速な応答を可能にするため、小さな自律ロボットやドローンを制御するのに有用であると考えています。
論文 参考訳(メタデータ) (2022-01-28T05:10:56Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
神経科学の発見が、ロボット工学における現在の推定と制御アルゴリズムを改善する機会をいかに開放するかについて議論する。
本稿では,実体プラットフォーム上でのこのような計算モデルの開発から得られた実験と教訓を要約する。
論文 参考訳(メタデータ) (2021-05-10T10:59:38Z) - Investigation of Warrior Robots Behavior by Using Evolutionary
Algorithms [0.09668407688201358]
この種のアルゴリズムは、ロボットの行動が集団行動に類似する性質にインスパイアされている。
インテリジェンスを持たないロボットに対しては、アルゴリズムを定義し、簡単なシミュレーションで結果を示すことができる。
論文 参考訳(メタデータ) (2020-11-18T18:31:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。