Exploring Graph Representation of Chorales
- URL: http://arxiv.org/abs/2201.11745v1
- Date: Thu, 27 Jan 2022 09:46:10 GMT
- Title: Exploring Graph Representation of Chorales
- Authors: Somnuk Phon-Amnuaisuk
- Abstract summary: This work explores overlapping areas music, graph theory, and machine learning.
An embedding representation of a node, in a weighted undirected graph $mathcalG$, is a representation that captures the meaning of nodes in an embedding space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work explores areas overlapping music, graph theory, and machine
learning. An embedding representation of a node, in a weighted undirected graph
$\mathcal{G}$, is a representation that captures the meaning of nodes in an
embedding space. In this work, 383 Bach chorales were compiled and represented
as a graph. Two application cases were investigated in this paper (i) learning
node embedding representation using \emph{Continuous Bag of Words (CBOW),
skip-gram}, and \emph{node2vec} algorithms, and (ii) learning node labels from
neighboring nodes based on a collective classification approach. The results of
this exploratory study ascertains many salient features of the graph-based
representation approach applicable to music applications.
Related papers
- Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Local Graph Embeddings Based on Neighbors Degree Frequency of Nodes [0.0]
We propose a strategy for graph machine learning and network analysis by defining certain local features and vector representations of nodes.
By extending the notion of the degree of a node via Breath-First Search, a general family of bf centrality functions is defined.
We show that centrality and closeness can be learned by applying deep learning to these local features.
arXiv Detail & Related papers (2022-07-30T07:07:30Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold.
The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level.
arXiv Detail & Related papers (2022-05-30T12:56:24Z) - COLOGNE: Coordinated Local Graph Neighborhood Sampling [1.6498361958317633]
replacing discrete unordered objects such as graph nodes by real-valued vectors is at the heart of many approaches to learning from graph data.
We address the problem of learning discrete node embeddings such that the coordinates of the node vector representations are graph nodes.
This opens the door to designing interpretable machine learning algorithms for graphs as all attributes originally present in the nodes are preserved.
arXiv Detail & Related papers (2021-02-09T11:39:06Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
We introduce node2coords, a representation learning algorithm for graphs.
It learns simultaneously a low-dimensional space and coordinates for the nodes in that space.
Experimental results demonstrate that the representations learned with node2coords are interpretable.
arXiv Detail & Related papers (2020-07-31T13:14:25Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.