On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning
- URL: http://arxiv.org/abs/2201.11803v1
- Date: Thu, 27 Jan 2022 20:43:38 GMT
- Title: On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning
- Authors: Hanhan Zhou, Tian Lan, Guru Venkataramani, Wenbo Ding
- Abstract summary: We present a unifying framework for heterogeneous FL algorithms with em arbitrary adaptive online model pruning.
In particular, we prove that under certain sufficient conditions, these algorithms converge to a stationary point of standard FL for general smooth cost functions.
We illuminate two key factors impacting convergence: pruning-induced noise and minimum coverage index.
- Score: 15.300983585090794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the biggest challenges in Federated Learning (FL) is that client
devices often have drastically different computation and communication
resources for local updates. To this end, recent research efforts have focused
on training heterogeneous local models obtained by pruning a shared global
model. Despite empirical success, theoretical guarantees on convergence remain
an open question. In this paper, we present a unifying framework for
heterogeneous FL algorithms with {\em arbitrary} adaptive online model pruning
and provide a general convergence analysis. In particular, we prove that under
certain sufficient conditions and on both IID and non-IID data, these
algorithms converges to a stationary point of standard FL for general smooth
cost functions, with a convergence rate of $O(\frac{1}{\sqrt{Q}})$. Moreover,
we illuminate two key factors impacting convergence: pruning-induced noise and
minimum coverage index, advocating a joint design of local pruning masks for
efficient training.
Related papers
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing.
While various algorithms have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention.
arXiv Detail & Related papers (2024-09-05T19:00:18Z) - FedHPL: Efficient Heterogeneous Federated Learning with Prompt Tuning and Logit Distillation [32.305134875959226]
Federated learning (FL) is a privacy-preserving paradigm that enables distributed clients to collaboratively train models with a central server.
We propose FedHPL, a parameter-efficient unified $textbfFed$erated learning framework for $textbfH$eterogeneous settings.
We show that our framework outperforms state-of-the-art FL approaches, with less overhead and training rounds.
arXiv Detail & Related papers (2024-05-27T15:25:32Z) - Decentralized Sporadic Federated Learning: A Unified Algorithmic Framework with Convergence Guarantees [18.24213566328972]
Decentralized decentralized learning (DFL) captures FL settings where both (i) model updates and (ii) model aggregations are carried out by the clients without a central server.
DSpodFL consistently achieves speeds compared with baselines under various system settings.
arXiv Detail & Related papers (2024-02-05T19:02:19Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks.
Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly.
This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time.
arXiv Detail & Related papers (2023-10-12T19:07:58Z) - FedHB: Hierarchical Bayesian Federated Learning [11.936836827864095]
We propose a novel hierarchical Bayesian approach to Federated Learning (FL)
Our model reasonably describes the generative process of clients' local data via hierarchical Bayesian modeling.
We show that our block-coordinate FL algorithm converges to an optimum of the objective at the rate of $O(sqrtt)$.
arXiv Detail & Related papers (2023-05-08T18:21:41Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Robust Convergence in Federated Learning through Label-wise Clustering [6.693651193181458]
Non-IID dataset and heterogeneous environment of the local clients are regarded as a major issue in Federated Learning (FL)
We propose a novel Label-wise clustering algorithm that guarantees the trainability among geographically heterogeneous local clients.
Our paper shows that proposed Label-wise clustering demonstrates prompt and robust convergence compared to other FL algorithms.
arXiv Detail & Related papers (2021-12-28T18:13:09Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.