Learning to Simulate Unseen Physical Systems with Graph Neural Networks
- URL: http://arxiv.org/abs/2201.11976v1
- Date: Fri, 28 Jan 2022 07:56:46 GMT
- Title: Learning to Simulate Unseen Physical Systems with Graph Neural Networks
- Authors: Ce Yang, Weihao Gao, Di Wu, Chong Wang
- Abstract summary: "Graph-based Physics Engine" is a machine learning method embedded with physical priors and material parameters.
We demonstrate that GPE can generalize to materials with different properties not seen in the training set.
In addition, introducing the law of momentum conservation in the model significantly improves the efficiency and stability of learning.
- Score: 13.202870928432045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation of the dynamics of physical systems is essential to the
development of both science and engineering. Recently there is an increasing
interest in learning to simulate the dynamics of physical systems using neural
networks. However, existing approaches fail to generalize to physical
substances not in the training set, such as liquids with different viscosities
or elastomers with different elasticities. Here we present a machine learning
method embedded with physical priors and material parameters, which we term as
"Graph-based Physics Engine" (GPE), to efficiently model the physical dynamics
of different substances in a wide variety of scenarios. We demonstrate that GPE
can generalize to materials with different properties not seen in the training
set and perform well from single-step predictions to multi-step roll-out
simulations. In addition, introducing the law of momentum conservation in the
model significantly improves the efficiency and stability of learning, allowing
convergence to better models with fewer training steps.
Related papers
- Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections.
We also propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images.
arXiv Detail & Related papers (2024-10-10T17:43:36Z) - AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation [30.367498271886866]
This paper introduces AdaptiGraph, a learning-based dynamics modeling approach.
It enables robots to predict, adapt to, and control a wide array of challenging deformable materials.
On prediction and manipulation tasks involving a diverse set of real-world deformable objects, our method exhibits superior prediction accuracy and task proficiency.
arXiv Detail & Related papers (2024-07-10T17:57:04Z) - Physically Consistent Neural ODEs for Learning Multi-Physics Systems [0.0]
In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems (IPHS), which can describe most multi-physics systems.
We propose Physically Consistent NODEs (PC-NODEs) to learn parameters from data.
We demonstrate the effectiveness of the proposed method by learning the thermodynamics of a building from the real-world measurements.
arXiv Detail & Related papers (2022-11-11T11:20:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
Several methods have proposed to integrate priors from classical mechanics into machine learning models.
We take a sober look at the current capabilities of these models.
We find that the use of continuous and time-reversible dynamics benefits models of all classes.
arXiv Detail & Related papers (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
We propose a deep learning architecture that forcibly encodes known physics knowledge to facilitate learning in a data-driven manner.
The coercive encoding mechanism of physics, which is fundamentally different from the penalty-based physics-informed learning, ensures the network to rigorously obey given physics.
arXiv Detail & Related papers (2021-05-02T21:40:39Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.